Published Online: 28 August 2008
Journal of Mathematical Physics 17, 1754 (1976); https://doi.org/10.1063/1.523104
more...View Affiliations
  • Physique Mathématique, Collège de France, F‐75231‐Paris Cedex 05, France
After a short review of results which we recently obtained on deformations of Lie algebras associated with symplectic manifolds, we discuss physical applications and treat some examples with deformed Poisson brackets. We make explicit a connection between classical and quantum mechanics, and the theory of Dirac brackets for second class constraints, from the viewpoint of deformation theory. Finally we discuss the general Dirac constraints formalism.
  1. 1. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, New York, 1963). Google Scholar
  2. 2. M. Gerstenhaber, Ann. Math. 79, 59 (1964). Google ScholarCrossref
  3. 3. C. Chevalley and S. Eilenberg, Trans. Amer. Math. Soc. 63, 85 (1948). Google ScholarCrossref
  4. 4. J. Vey, “Déformation du crochet de Poisson sur une variété symplectique,” Comment. Helv. Math. (to be published). Google Scholar
  5. 5. A. Lichnerowicz, J. Math. Pures Appl. 53, 459 (1974) Google Scholar
    A. Lichnerowicz, and C. R. Acad. Sci. Paris A 277, 215 (1973). Google Scholar
  6. 6. M. Flato, A. Lichnerowicz, and D. Sternheimer, C. R. Acad. Sci. Paris A 279, 877 (1975); Google Scholar
    Compositio Mathematica 31, 47 (1975). Google Scholar
  7. 7. A. Nijenhuis, Indag. Math. 17, 390 (1955). Google ScholarCrossref
  8. 8. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1956). Google Scholar
  9. 9. G. S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970). Google ScholarCrossref
  10. 10. D. Arnal, “Symmetric non self‐adjoint operators in an enveloping algebra,” J. Funct. Anal. (to be published). Google Scholar
  11. 11. N. Bourbaki, Algèbres de Lie (Hermann, Paris, 1960). Google Scholar
  12. 12. R. Kerner, C. R. Acad. Sci. Paris A 269, 175 (1969). Google Scholar
  13. 13. M. Flato and D. Sternheimer, Phys. Rev. Letters 16, 1185 (1966); Google ScholarCrossref
    M. Flato and D. Sternheimer, Commun. Math. Phys. 12, 296 (1969). , Google ScholarCrossref
  14. 14. P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Sciences Monograph Series No. 2 (Yeshiva University, New York, 1964). Google Scholar
  15. 15. J. Sniatycki, Ann. Inst. H. Poincaré 20, 365 (1974). Google Scholar
  16. 16. A. Lichnerowicz, C. R. Acad. Sci. Paris A 280, 523 (1974). Google Scholar
  17. 17. Y. Nambu, Phys. Rev. D 7, 2405 (1973). Google ScholarCrossref
  18. 18. F. Bayen and M. Flato, Phys. Rev. D 11, 3049 (1975). Google ScholarCrossref
  19. 19. N. Mukunda and E. C. G. Sudarshan, Phys. Rev. D 13, 2846 (1976). Google ScholarCrossref
  20. 20. A. Lichnerowicz, C. R. Acad. Sci. Paris A 280, 37 (1975); Google Scholar
    A. Lichnerowicz, A 281 (1975); Google Scholar
    Variétés symplectiques, variétés canoniques et systèmes dynamiques (E. T. Davies memorial volume, to be published); Google Scholar
    Les variétés de Poisson et leurs algèbres de Lie associées (to be published). Google Scholar
  21. 21. M. Flato, A. Lichnerowicz, and D. Sternheimer, “Algèbres de Lie attachées à une variété canonique,” J. Math. Pures Appl. 54, 445 (1975). Google Scholar
  22. © 1976 American Institute of Physics.