No Access Published Online: 06 December 2019
AIP Conference Proceedings 2174, 020254 (2019); https://doi.org/10.1063/1.5134405
more...View Affiliations
View Contributors
  • D. V. Shmarko
  • T. M. Nesterova
  • K. S. Ushenin
The electrophysiology of cardiomyocytes is traditionally described with ordinary differential equations, the parameters of which are fitted to experimental data using the least-squares method, however, some physiological processes cannot be described by one model and require a statistical analysis of a population of models. This population and Bayes’ theorem can provide a probability density function for the model parameter values under certain experimental observations. However, the results of Bayesian approaches are fully determined by the model of the studied process. In this preliminary study, we analyze the sensitivity of Majumder2016 model, which describes the neonatal rat atrial cardiomyocyte, to variation of its parameters. In addition, we test several functions translating distance between action potential shapes into probability, that may be useful for Bayes’ approaches that fitting of model parameters to experimental observations.
  1. 1. R. R. Nair, and P. Nair, The international journal of biochemistry and cell biology 33(2), 119–125 (2001). https://doi.org/10.1016/S1357-2725(00)00077-7, Google ScholarCrossref
  2. 2. V. A. Maltsev, N. Silverman, H. N. Sabbah, A. I. Undrovinas, European journal of heart failure 9(3), 219–227 (2007). https://doi.org/10.1016/j.ejheart.2006.08.007, Google ScholarCrossref
  3. 3. A. Muszkiewicz, O. J. Britton, P. Gemmell, E. Passini, C. Sánchez, X. Zhou, and B. Rodriguez, Progress in biophysics and molecular biology 120(1-3), 115–127 (2016). https://doi.org/10.1016/j.pbiomolbio.2015.12.002, Google ScholarCrossref
  4. 4. R. H. Johnstone, E. T. Chang, R. Bardenet, T. P. De Boer, D. J. Gavaghan, P. Pathmanathan, and G. R. Mirams, Journal of molecular and cellular cardiology 96, 49–62 (2016). https://doi.org/10.1016/j.yjmcc.2015.11.018, Google ScholarCrossref
  5. 5. S. Coveney and R. H. Clayton, Progress in biophysics and molecular biology 139, 43–58 (2018). https://doi.org/10.1016/j.pbiomolbio.2018.08.001, Google ScholarCrossref
  6. 6. R. Majumder, W. Jangsangthong, I. Feola, D. L. Ypey, D. A. Pijnappels, and A. V. Panfilov, PLoS computational biology 12(6) (2016). https://doi.org/10.1371/journal.pcbi.1004946, Google ScholarCrossref
  7. 7. M. Clerx, P. Collins, E. de Lange, and P. G. Volders, Progress in biophysics and molecular biology 120(1-3), 100–114 (2016). https://doi.org/10.1016/j.pbiomolbio.2015.12.008, Google ScholarCrossref
  8. 8. G. Avila, I. M. Medina, E. Jiménez, G. Elizondo, and C. I. Aguilar, American Journal of Physiology-Heart and Circulatory Physiology 292(1), H622–H631 (2007). https://doi.org/10.1152/ajpheart.00781.2006, Google ScholarCrossref
  1. © 2019 Author(s). Published by AIP Publishing.