No Access Submitted: 20 September 2019 Accepted: 12 December 2019 Published Online: 03 January 2020
J. Chem. Phys. 152, 014104 (2020); https://doi.org/10.1063/1.5128603
Within materials informatics, a rapidly developing subfield of materials research, past (curated) data are mined and learned for either discovering new materials or identifying new functionalities of known materials. This paper provides an example of this process. Starting from a recently developed (very diverse) dataset which includes 1346 hybrid organic-inorganic perovskites (HOIPs), we downselect a subset of 350 three dimensional HOIPs to a final set of four lead-free HOIPs, including CH3NH3SnI3, HC(NH2)2SnI3, NH2NH3SnI3, and NH2(CH2)3SnI3, in which the first two were experimentally synthesized and the others remain hypothetical. Using first-principles based computational methods, we show that these HOIPs have preferable electronic band structures and carrier effective mass, good optical properties, and high spectroscopic limited maximum efficiency. Compared to the experimental data, we find that state-of-the-art numerical methods can predict the electronic and optical properties fairly well, while the current model for the spectroscopic limited maximum efficiency is inadequate for capturing the power conversion efficiency of a solar absorber. We suggest that the HOIP dataset should be expanded to include larger structures of HOIPs, thereby being more useful for future data-mining and machine-learning approaches.
Research is supported by Vingroup Innovation Foundation (VINIF) in project code VINIF.2019.DA03. The authors thank Marnik Bercx (University of Antwerp) for useful discussions and acknowledge computational support from XSEDE under Grant No. TG-DMR170031. The structures of the HOIPs reported in this work are available in the supplementary material and at http://godeepdata.org/.
  1. 1. K. Rajan, Mater. Today 8, 38 (2005). https://doi.org/10.1016/s1369-7021(05)71123-8, Google ScholarCrossref
  2. 2. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017). https://doi.org/10.1038/s41524-017-0056-5, Google ScholarCrossref, ISI
  3. 3. C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, and R. Ramprasad, J. Phys. Chem. C 122, 17575 (2018). https://doi.org/10.1021/acs.jpcc.8b02913, Google ScholarCrossref
  4. 4. T. D. Huan, A. Mannodi-Kanakkithodi, and R. Ramprasad, Phys. Rev. B 92, 014106 (2015). https://doi.org/10.1103/physrevb.92.014106, Google ScholarCrossref
  5. 5. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323, Google ScholarScitation, ISI
  6. 6. J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013). https://doi.org/10.1007/s11837-013-0755-4, Google ScholarCrossref, ISI
  7. 7. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/physrev.136.b864, Google ScholarCrossref, ISI
  8. 8. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/physrev.140.a1133, Google ScholarCrossref, ISI
  9. 9. T. D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, and R. Ramprasad, Sci. Data 3, 160012 (2016). https://doi.org/10.1038/sdata.2016.12, Google ScholarCrossref
  10. 10. C. Kim, T. D. Huan, S. Krishnan, and R. Ramprasad, Sci. Data 4, 170057 (2017). https://doi.org/10.1038/sdata.2017.57, Google ScholarCrossref
  11. 11. T. D. Huan, Phys. Rev. Mater. 2, 023803 (2018). https://doi.org/10.1103/physrevmaterials.2.023803, Google ScholarCrossref, ISI
  12. 12. V. N. Tuoc and T. D. Huan, J. Phys. Chem. C 122, 17067 (2018). https://doi.org/10.1021/acs.jpcc.8b04328, Google ScholarCrossref
  13. 13. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures, edited by M. Grätzel, T. Miyasaka, and N.-G. Park (Springer International Publishing, Switzerland, 2016). Google Scholar
  14. 14. A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019). https://doi.org/10.1021/acs.chemrev.8b00539, Google ScholarCrossref, ISI
  15. 15. C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, Chem. Rev. 119, 3418 (2019). https://doi.org/10.1021/acs.chemrev.8b00336, Google ScholarCrossref, ISI
  16. 16. F. Giustino and H. J. Snaith, ACS Energy Lett. 1, 1233 (2016). https://doi.org/10.1021/acsenergylett.6b00499, Google ScholarCrossref, ISI
  17. 17. L. Liang and P. Gao, Adv. Sci. 5, 1700331 (2018). https://doi.org/10.1002/advs.201700331, Google ScholarCrossref
  18. 18. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, Science 351, 151 (2016). https://doi.org/10.1126/science.aad5845, Google ScholarCrossref, ISI
  19. 19. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, Chem. Mater. 28, 284 (2016). https://doi.org/10.1021/acs.chemmater.5b04107, Google ScholarCrossref, ISI
  20. 20. Z. Wang, Q. Lin, B. Wenger, M. G. Christoforo, Y.-H. Lin, M. T. Klug, M. B. Johnston, L. M. Herz, and H. J. Snaith, Nat. Energy 3, 855 (2018). https://doi.org/10.1038/s41560-018-0220-2, Google ScholarCrossref
  21. 21. I. E. Castelli, J. M. García-Lastra, K. S. Thygesen, and K. W. Jacobsen, APL Mater. 2, 081514 (2014). https://doi.org/10.1063/1.4893495, Google ScholarScitation, ISI
  22. 22. T. D. Huan, V. N. Tuoc, and N. V. Minh, Phys. Rev. B 93, 094105 (2016). https://doi.org/10.1103/physrevb.93.094105, Google ScholarCrossref
  23. 23. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82, Google ScholarCrossref, ISI
  24. 24. Y. Yu, D. Zhao, C. R. Grice, W. Meng, C. Wang, W. Liao, A. J. Cimaroli, H. Zhang, K. Zhu, and Y. Yan, RSC Adv. 6, 90248 (2016). https://doi.org/10.1039/c6ra19476a, Google ScholarCrossref
  25. 25. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013). https://doi.org/10.1021/ic401215x, Google ScholarCrossref, ISI
  26. 26. D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983). https://doi.org/10.1103/physrevb.28.1809, Google ScholarCrossref, ISI
  27. 27. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/physreva.38.3098, Google ScholarCrossref, ISI
  28. 28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060, Google ScholarScitation, ISI
  29. 29. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597, Google ScholarScitation, ISI
  30. 30. S. Goedecker, J. Chem. Phys. 120, 9911 (2004). https://doi.org/10.1063/1.1724816, Google ScholarScitation, ISI
  31. 31. M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010). https://doi.org/10.1063/1.3512900, Google ScholarScitation, ISI
  32. 32. T. D. Huan, M. Amsler, V. N. Tuoc, A. Willand, and S. Goedecker, Phys. Rev. B 86, 224110 (2012). https://doi.org/10.1103/physrevb.86.224110, Google ScholarCrossref
  33. 33. T. D. Huan, M. Amsler, R. Sabatini, V. N. Tuoc, N. B. Le, L. M. Woods, N. Marzari, and S. Goedecker, Phys. Rev. B 88, 024108 (2013). https://doi.org/10.1103/physrevb.88.024108, Google ScholarCrossref
  34. 34. H. D. Tran, M. Amsler, S. Botti, M. A. L. Marques, and S. Goedecker, J. Chem. Phys. 140, 124708 (2014). https://doi.org/10.1063/1.4869194, Google ScholarScitation, ISI
  35. 35. T. D. Huan, V. N. Tuoc, N. B. Le, N. V. Minh, and L. M. Woods, Phys. Rev. B 93, 094109 (2016). https://doi.org/10.1103/physrevb.93.094109, Google ScholarCrossref, ISI
  36. 36. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953, Google ScholarCrossref, ISI
  37. 37. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/physrevb.47.558, Google ScholarCrossref, ISI
  38. 38. G. Kresse, “Ab initio molekular dynamik für flüssige metalle,” Ph.D. thesis, Technische Universität Wien, 1993. Google Scholar
  39. 39. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0, Google ScholarCrossref, ISI
  40. 40. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169, Google ScholarCrossref, ISI
  41. 41. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). https://doi.org/10.1103/physrevb.82.081101, Google ScholarCrossref
  42. 42. E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009). https://doi.org/10.1021/ct900365q, Google ScholarCrossref, ISI
  43. 43. J. P. Perdew, Int. J. Quantum Chem. 28, 497 (1985). Google ScholarCrossref
  44. 44. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/physrevlett.102.226401, Google ScholarCrossref, ISI
  45. 45. A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006). https://doi.org/10.1063/1.2213970, Google ScholarScitation, ISI
  46. 46. L. Brownlee, Nature 166, 482 (1950). https://doi.org/10.1038/166482a0, Google ScholarCrossref, ISI
  47. 47. P. M. Harris, E. Mack, Jr., and F. Blake, J. Am. Chem. Soc. 50, 1583 (1928). https://doi.org/10.1021/ja01393a009, Google ScholarCrossref
  48. 48. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, USA, 2012). Google Scholar
  49. 49. R. Sharma and Y. Chang, Bull. Alloy Phase Diagrams 7, 269 (1986). https://doi.org/10.1007/bf02869004, Google ScholarCrossref
  50. 50. A. Novoselova, V. Zlomanov, S. Karbanov, O. Matveyev, and A. Gas’kov, Prog. Solid State Chem. 7, 85 (1972). https://doi.org/10.1016/0079-6786(72)90005-2, Google ScholarCrossref
  51. 51. I. P. Swainson, C. Stock, S. F. Parker, L. Van Eijck, M. Russina, and J. W. Taylor, Phys. Rev. B 92, 100303 (2015). https://doi.org/10.1103/physrevb.92.100303, Google ScholarCrossref
  52. 52. F. Brivio, J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, A. R. Goñi, A. M. A. Leguy, P. R. F. Barnes, and A. Walsh, Phys. Rev. B 92, 144308 (2015). https://doi.org/10.1103/physrevb.92.144308, Google ScholarCrossref
  53. 53. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). https://doi.org/10.1103/physrevb.78.134106, Google ScholarCrossref
  54. 54. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). https://doi.org/10.1103/physrevlett.78.4063, Google ScholarCrossref, ISI
  55. 55. P.-P. Sun, Q.-S. Li, L.-N. Yang, and Z.-S. Li, Nanoscale 8, 1503 (2016). https://doi.org/10.1039/c5nr05337d, Google ScholarCrossref
  56. 56. P. Umari, E. Mosconi, and F. D. Angelis, Sci. Rep. 4, 4467 (2014). https://doi.org/10.1038/srep04467, Google ScholarCrossref, ISI
  57. 57. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034, Google ScholarScitation, ISI
  58. 58. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/physrevb.73.045112, Google ScholarCrossref, ISI
  59. 59. D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Science 348, 683 (2015). https://doi.org/10.1126/science.aaa5333, Google ScholarCrossref, ISI
  60. 60. S. D. Stranks and H. J. Snaith, Nat. Nanotechnol. 10, 391 (2015). https://doi.org/10.1038/nnano.2015.90, Google ScholarCrossref, ISI
  61. 61. T. Hakamata, K. Shimamura, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Sci. Rep. 6, 19599 (2016). https://doi.org/10.1038/srep19599, Google ScholarCrossref
  62. 62. L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012). https://doi.org/10.1103/physrevlett.108.068701, Google ScholarCrossref
  63. 63. L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, Adv. Energy Mater. 3, 43 (2013). https://doi.org/10.1002/aenm.201200538, Google ScholarCrossref, ISI
  64. 64. M. Bercx, N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, Phys. Chem. Chem. Phys. 18, 20542 (2016). https://doi.org/10.1039/c6cp03468c, Google ScholarCrossref
  65. 65. N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, J. Appl. Phys. 120, 085707 (2016). https://doi.org/10.1063/1.4961562, Google ScholarScitation, ISI
  66. 66. J. Wang, H. Chen, S.-H. Wei, and W.-J. Yin, Adv. Mater. 31, 1806593 (2019). https://doi.org/10.1002/adma.201806593, Google ScholarCrossref
  67. 67. D. H. Fabini, M. Koerner, and R. Seshadri, Chem. Mater. 31, 1561 (2019). https://doi.org/10.1021/acs.chemmater.8b04542, Google ScholarCrossref
  68. 68. R. Mayengbam, A. Srivastava, S. K. Tripathy, and G. Palai, J. Phys. Chem. C 123, 23323 (2019). https://doi.org/10.1021/acs.jpcc.9b03835, Google ScholarCrossref
  69. 69. T. D. Huan, R. Batra, J. Chapman, C. Kim, A. Chandrasekaran, and R. Ramprasad, J. Phys. Chem. C 123, 20715 (2019). https://doi.org/10.1021/acs.jpcc.9b04207, Google ScholarCrossref
  70. 70. R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam, Phys. Rev. Lett. 122, 225701 (2019). https://doi.org/10.1103/physrevlett.122.225701, Google ScholarCrossref
  1. © 2020 Author(s). Published under license by AIP Publishing.