ABSTRACT
Within materials informatics, a rapidly developing subfield of materials research, past (curated) data are mined and learned for either discovering new materials or identifying new functionalities of known materials. This paper provides an example of this process. Starting from a recently developed (very diverse) dataset which includes 1346 hybrid organic-inorganic perovskites (HOIPs), we downselect a subset of 350 three dimensional HOIPs to a final set of four lead-free HOIPs, including CH3NH3SnI3, HC(NH2)2SnI3, NH2NH3SnI3, and NH2(CH2)3SnI3, in which the first two were experimentally synthesized and the others remain hypothetical. Using first-principles based computational methods, we show that these HOIPs have preferable electronic band structures and carrier effective mass, good optical properties, and high spectroscopic limited maximum efficiency. Compared to the experimental data, we find that state-of-the-art numerical methods can predict the electronic and optical properties fairly well, while the current model for the spectroscopic limited maximum efficiency is inadequate for capturing the power conversion efficiency of a solar absorber. We suggest that the HOIP dataset should be expanded to include larger structures of HOIPs, thereby being more useful for future data-mining and machine-learning approaches.
ACKNOWLEDGMENTS
Research is supported by Vingroup Innovation Foundation (VINIF) in project code VINIF.2019.DA03. The authors thank Marnik Bercx (University of Antwerp) for useful discussions and acknowledge computational support from XSEDE under Grant No. TG-DMR170031. The structures of the HOIPs reported in this work are available in the supplementary material and at http://godeepdata.org/.
- 1. K. Rajan, Mater. Today 8, 38 (2005). https://doi.org/10.1016/s1369-7021(05)71123-8, Google ScholarCrossref
- 2. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017). https://doi.org/10.1038/s41524-017-0056-5, Google ScholarCrossref, ISI
- 3. C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, and R. Ramprasad, J. Phys. Chem. C 122, 17575 (2018). https://doi.org/10.1021/acs.jpcc.8b02913, Google ScholarCrossref
- 4. T. D. Huan, A. Mannodi-Kanakkithodi, and R. Ramprasad, Phys. Rev. B 92, 014106 (2015). https://doi.org/10.1103/physrevb.92.014106, Google ScholarCrossref
- 5. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323, Google ScholarScitation, ISI
- 6. J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013). https://doi.org/10.1007/s11837-013-0755-4, Google ScholarCrossref, ISI
- 7. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/physrev.136.b864, Google ScholarCrossref, ISI
- 8. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/physrev.140.a1133, Google ScholarCrossref, ISI
- 9. T. D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, and R. Ramprasad, Sci. Data 3, 160012 (2016). https://doi.org/10.1038/sdata.2016.12, Google ScholarCrossref
- 10. C. Kim, T. D. Huan, S. Krishnan, and R. Ramprasad, Sci. Data 4, 170057 (2017). https://doi.org/10.1038/sdata.2017.57, Google ScholarCrossref
- 11. T. D. Huan, Phys. Rev. Mater. 2, 023803 (2018). https://doi.org/10.1103/physrevmaterials.2.023803, Google ScholarCrossref, ISI
- 12. V. N. Tuoc and T. D. Huan, J. Phys. Chem. C 122, 17067 (2018). https://doi.org/10.1021/acs.jpcc.8b04328, Google ScholarCrossref
- 13. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures, edited by M. Grätzel, T. Miyasaka, and N.-G. Park (Springer International Publishing, Switzerland, 2016). Google Scholar
- 14. A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019). https://doi.org/10.1021/acs.chemrev.8b00539, Google ScholarCrossref, ISI
- 15. C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, Chem. Rev. 119, 3418 (2019). https://doi.org/10.1021/acs.chemrev.8b00336, Google ScholarCrossref, ISI
- 16. F. Giustino and H. J. Snaith, ACS Energy Lett. 1, 1233 (2016). https://doi.org/10.1021/acsenergylett.6b00499, Google ScholarCrossref, ISI
- 17. L. Liang and P. Gao, Adv. Sci. 5, 1700331 (2018). https://doi.org/10.1002/advs.201700331, Google ScholarCrossref
- 18. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, Science 351, 151 (2016). https://doi.org/10.1126/science.aad5845, Google ScholarCrossref, ISI
- 19. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, Chem. Mater. 28, 284 (2016). https://doi.org/10.1021/acs.chemmater.5b04107, Google ScholarCrossref, ISI
- 20. Z. Wang, Q. Lin, B. Wenger, M. G. Christoforo, Y.-H. Lin, M. T. Klug, M. B. Johnston, L. M. Herz, and H. J. Snaith, Nat. Energy 3, 855 (2018). https://doi.org/10.1038/s41560-018-0220-2, Google ScholarCrossref
- 21. I. E. Castelli, J. M. García-Lastra, K. S. Thygesen, and K. W. Jacobsen, APL Mater. 2, 081514 (2014). https://doi.org/10.1063/1.4893495, Google ScholarScitation, ISI
- 22. T. D. Huan, V. N. Tuoc, and N. V. Minh, Phys. Rev. B 93, 094105 (2016). https://doi.org/10.1103/physrevb.93.094105, Google ScholarCrossref
- 23. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82, Google ScholarCrossref, ISI
- 24. Y. Yu, D. Zhao, C. R. Grice, W. Meng, C. Wang, W. Liao, A. J. Cimaroli, H. Zhang, K. Zhu, and Y. Yan, RSC Adv. 6, 90248 (2016). https://doi.org/10.1039/c6ra19476a, Google ScholarCrossref
- 25. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013). https://doi.org/10.1021/ic401215x, Google ScholarCrossref, ISI
- 26. D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983). https://doi.org/10.1103/physrevb.28.1809, Google ScholarCrossref, ISI
- 27. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/physreva.38.3098, Google ScholarCrossref, ISI
- 28. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060, Google ScholarScitation, ISI
- 29. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597, Google ScholarScitation, ISI
- 30. S. Goedecker, J. Chem. Phys. 120, 9911 (2004). https://doi.org/10.1063/1.1724816, Google ScholarScitation, ISI
- 31. M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010). https://doi.org/10.1063/1.3512900, Google ScholarScitation, ISI
- 32. T. D. Huan, M. Amsler, V. N. Tuoc, A. Willand, and S. Goedecker, Phys. Rev. B 86, 224110 (2012). https://doi.org/10.1103/physrevb.86.224110, Google ScholarCrossref
- 33. T. D. Huan, M. Amsler, R. Sabatini, V. N. Tuoc, N. B. Le, L. M. Woods, N. Marzari, and S. Goedecker, Phys. Rev. B 88, 024108 (2013). https://doi.org/10.1103/physrevb.88.024108, Google ScholarCrossref
- 34. H. D. Tran, M. Amsler, S. Botti, M. A. L. Marques, and S. Goedecker, J. Chem. Phys. 140, 124708 (2014). https://doi.org/10.1063/1.4869194, Google ScholarScitation, ISI
- 35. T. D. Huan, V. N. Tuoc, N. B. Le, N. V. Minh, and L. M. Woods, Phys. Rev. B 93, 094109 (2016). https://doi.org/10.1103/physrevb.93.094109, Google ScholarCrossref, ISI
- 36. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953, Google ScholarCrossref, ISI
- 37. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/physrevb.47.558, Google ScholarCrossref, ISI
- 38. G. Kresse, “Ab initio molekular dynamik für flüssige metalle,” Ph.D. thesis, Technische Universität Wien, 1993. Google Scholar
- 39. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0, Google ScholarCrossref, ISI
- 40. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169, Google ScholarCrossref, ISI
- 41. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). https://doi.org/10.1103/physrevb.82.081101, Google ScholarCrossref
- 42. E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009). https://doi.org/10.1021/ct900365q, Google ScholarCrossref, ISI
- 43. J. P. Perdew, Int. J. Quantum Chem. 28, 497 (1985). Google ScholarCrossref
- 44. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/physrevlett.102.226401, Google ScholarCrossref, ISI
- 45. A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006). https://doi.org/10.1063/1.2213970, Google ScholarScitation, ISI
- 46. L. Brownlee, Nature 166, 482 (1950). https://doi.org/10.1038/166482a0, Google ScholarCrossref, ISI
- 47. P. M. Harris, E. Mack, Jr., and F. Blake, J. Am. Chem. Soc. 50, 1583 (1928). https://doi.org/10.1021/ja01393a009, Google ScholarCrossref
- 48. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, USA, 2012). Google Scholar
- 49. R. Sharma and Y. Chang, Bull. Alloy Phase Diagrams 7, 269 (1986). https://doi.org/10.1007/bf02869004, Google ScholarCrossref
- 50. A. Novoselova, V. Zlomanov, S. Karbanov, O. Matveyev, and A. Gas’kov, Prog. Solid State Chem. 7, 85 (1972). https://doi.org/10.1016/0079-6786(72)90005-2, Google ScholarCrossref
- 51. I. P. Swainson, C. Stock, S. F. Parker, L. Van Eijck, M. Russina, and J. W. Taylor, Phys. Rev. B 92, 100303 (2015). https://doi.org/10.1103/physrevb.92.100303, Google ScholarCrossref
- 52. F. Brivio, J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, A. R. Goñi, A. M. A. Leguy, P. R. F. Barnes, and A. Walsh, Phys. Rev. B 92, 144308 (2015). https://doi.org/10.1103/physrevb.92.144308, Google ScholarCrossref
- 53. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). https://doi.org/10.1103/physrevb.78.134106, Google ScholarCrossref
- 54. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). https://doi.org/10.1103/physrevlett.78.4063, Google ScholarCrossref, ISI
- 55. P.-P. Sun, Q.-S. Li, L.-N. Yang, and Z.-S. Li, Nanoscale 8, 1503 (2016). https://doi.org/10.1039/c5nr05337d, Google ScholarCrossref
- 56. P. Umari, E. Mosconi, and F. D. Angelis, Sci. Rep. 4, 4467 (2014). https://doi.org/10.1038/srep04467, Google ScholarCrossref, ISI
- 57. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034, Google ScholarScitation, ISI
- 58. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/physrevb.73.045112, Google ScholarCrossref, ISI
- 59. D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Science 348, 683 (2015). https://doi.org/10.1126/science.aaa5333, Google ScholarCrossref, ISI
- 60. S. D. Stranks and H. J. Snaith, Nat. Nanotechnol. 10, 391 (2015). https://doi.org/10.1038/nnano.2015.90, Google ScholarCrossref, ISI
- 61. T. Hakamata, K. Shimamura, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Sci. Rep. 6, 19599 (2016). https://doi.org/10.1038/srep19599, Google ScholarCrossref
- 62. L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012). https://doi.org/10.1103/physrevlett.108.068701, Google ScholarCrossref
- 63. L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, Adv. Energy Mater. 3, 43 (2013). https://doi.org/10.1002/aenm.201200538, Google ScholarCrossref, ISI
- 64. M. Bercx, N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, Phys. Chem. Chem. Phys. 18, 20542 (2016). https://doi.org/10.1039/c6cp03468c, Google ScholarCrossref
- 65. N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, J. Appl. Phys. 120, 085707 (2016). https://doi.org/10.1063/1.4961562, Google ScholarScitation, ISI
- 66. J. Wang, H. Chen, S.-H. Wei, and W.-J. Yin, Adv. Mater. 31, 1806593 (2019). https://doi.org/10.1002/adma.201806593, Google ScholarCrossref
- 67. D. H. Fabini, M. Koerner, and R. Seshadri, Chem. Mater. 31, 1561 (2019). https://doi.org/10.1021/acs.chemmater.8b04542, Google ScholarCrossref
- 68. R. Mayengbam, A. Srivastava, S. K. Tripathy, and G. Palai, J. Phys. Chem. C 123, 23323 (2019). https://doi.org/10.1021/acs.jpcc.9b03835, Google ScholarCrossref
- 69. T. D. Huan, R. Batra, J. Chapman, C. Kim, A. Chandrasekaran, and R. Ramprasad, J. Phys. Chem. C 123, 20715 (2019). https://doi.org/10.1021/acs.jpcc.9b04207, Google ScholarCrossref
- 70. R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam, Phys. Rev. Lett. 122, 225701 (2019). https://doi.org/10.1103/physrevlett.122.225701, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.


