No Access Published Online: 21 May 2019
AIP Conference Proceedings 2107, 040004 (2019); https://doi.org/10.1063/1.5109506
Polymer nanocomposites exhibit complex rheological behaviour due to physical and also sometimes chemical interactions between individual components. So far, rheology of polymer nanocomposites has been usually described by evaluation of viscosity curve (shear thinning), storage modulus curve (secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, Cole-Cole plot). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as „storage factor“, analogically to commonly used loss factor. Then values of storage factor were integrated over specific frequency range and called as “cumulative storage factor”. In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion quality (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach.
  1. 1. S. S. Ray and M. Okamoto, Progr. Polym. Sci. 28, 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002, Google ScholarCrossref
  2. 2. M. Kracalik, L. Pospisil, M. Slouf, J. Mikesova, A. Sikora, J. Simonik and I. Fortelny, Polym. Compos. 29, 437–442 (2008). https://doi.org/10.1002/pc.20425, Google ScholarCrossref
  3. 3. M. Kracalik, L. Pospisil, M. Slouf, J. Mikesova, A. Sikora, J. Simonik and I. Fortelny. Polym. Compos. 29, 915–921 (2008). https://doi.org/10.1002/pc.20467, Google ScholarCrossref
  4. 4. M. Kracalik, S. Laske, M. Gschweitl, W. Friesenbichler and G. R. Langecker. J. Appl. Polym. Sci. 113, 1422–1428 (2009). https://doi.org/10.1002/app.29888, Google ScholarCrossref
  5. 5. S. Laske, A. Witschnigg, H. Mattausch, M. Kracalik, G. Pinter, M. Feuchter, G. Maier and C. Holzer. Appl. Rheol. 22, 24590–24599 (2012). Google Scholar
  6. 6. S. Laske, M. Kracalik, M. Feuchter, G. Pinter, G. Maier, W. Märzinger, M. Haberkorn and G. R. Langecker. J. Appl. Polym. Sci. 114, 2488–2496 (2009). https://doi.org/10.1002/app.30765, Google ScholarCrossref
  7. 7. A. Witschnigg, S. Laske, M. Kracalik, M. Feuchter, G. Pinter, G. Maier, W. Märzinger, M. Haberkorn, G. R. Langecker and C. Holzer, J. Appl. Polym. Sci. 117, 3047–3053 (2010). Google Scholar
  8. 8. J. Gilman, T. Kashiwagi and J. Lichtenhan, Sampe J. 33, 40–46 (1997). Google Scholar
  9. 9. S. S. Ray, K. Yamada, M. Okamoto and K. Ueda, Polymer 44, 857–866 (2003). https://doi.org/10.1016/S0032-3861(02)00818-2, Google ScholarCrossref
  10. 10. K. M. Lee and C. D. Han, Macromolecules 36, 7165–7178 (2003). https://doi.org/10.1021/ma030302w, Google ScholarCrossref, ISI
  11. 11. S. Laske, M. Kracalik, M. Gschweitl, M. Feuchter, G. Maier, G. Pinter, R. Thomann, W. Friesenbichler and G. R. Langecker. J. Appl. Polym. Sci. 111, 2253–2259 (2009). https://doi.org/10.1002/app.29163, Google ScholarCrossref
  12. 12. M. Kracalik, S. Laske, A. Witschnigg and C. Holzer, Rheol Acta 50, 937–944 (2011). https://doi.org/10.1007/s00397-011-0545-2, Google ScholarCrossref
  13. 13. M. Van Gurp and J. Palmen, Rheol. Bull. 67, 5–8 (1998). Google Scholar
  14. 14. S. Trinkle, P. Walter and C. Friedrich, Rheol. Acta 41, 103–113 (2002). https://doi.org/10.1007/s003970200010, Google ScholarCrossref, ISI
  15. 15. M. Kracalik, AIP Conference Proceedings, 1843, 050005-1–050005-5 (2017). https://doi.org/10.1063/1.4982997, Google ScholarScitation
  1. © 2019 Author(s). Published by AIP Publishing.