ABSTRACT
Polymer nanocomposites exhibit complex rheological behaviour due to physical and also sometimes chemical interactions between individual components. So far, rheology of polymer nanocomposites has been usually described by evaluation of viscosity curve (shear thinning), storage modulus curve (secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, Cole-Cole plot). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as „storage factor“, analogically to commonly used loss factor. Then values of storage factor were integrated over specific frequency range and called as “cumulative storage factor”. In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion quality (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach.
- 1. S. S. Ray and M. Okamoto, Progr. Polym. Sci. 28, 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002, Google ScholarCrossref
- 2. M. Kracalik, L. Pospisil, M. Slouf, J. Mikesova, A. Sikora, J. Simonik and I. Fortelny, Polym. Compos. 29, 437–442 (2008). https://doi.org/10.1002/pc.20425, Google ScholarCrossref
- 3. M. Kracalik, L. Pospisil, M. Slouf, J. Mikesova, A. Sikora, J. Simonik and I. Fortelny. Polym. Compos. 29, 915–921 (2008). https://doi.org/10.1002/pc.20467, Google ScholarCrossref
- 4. M. Kracalik, S. Laske, M. Gschweitl, W. Friesenbichler and G. R. Langecker. J. Appl. Polym. Sci. 113, 1422–1428 (2009). https://doi.org/10.1002/app.29888, Google ScholarCrossref
- 5. S. Laske, A. Witschnigg, H. Mattausch, M. Kracalik, G. Pinter, M. Feuchter, G. Maier and C. Holzer. Appl. Rheol. 22, 24590–24599 (2012). Google Scholar
- 6. S. Laske, M. Kracalik, M. Feuchter, G. Pinter, G. Maier, W. Märzinger, M. Haberkorn and G. R. Langecker. J. Appl. Polym. Sci. 114, 2488–2496 (2009). https://doi.org/10.1002/app.30765, Google ScholarCrossref
- 7. A. Witschnigg, S. Laske, M. Kracalik, M. Feuchter, G. Pinter, G. Maier, W. Märzinger, M. Haberkorn, G. R. Langecker and C. Holzer, J. Appl. Polym. Sci. 117, 3047–3053 (2010). Google Scholar
- 8. J. Gilman, T. Kashiwagi and J. Lichtenhan, Sampe J. 33, 40–46 (1997). Google Scholar
- 9. S. S. Ray, K. Yamada, M. Okamoto and K. Ueda, Polymer 44, 857–866 (2003). https://doi.org/10.1016/S0032-3861(02)00818-2, Google ScholarCrossref
- 10. K. M. Lee and C. D. Han, Macromolecules 36, 7165–7178 (2003). https://doi.org/10.1021/ma030302w, Google ScholarCrossref, ISI
- 11. S. Laske, M. Kracalik, M. Gschweitl, M. Feuchter, G. Maier, G. Pinter, R. Thomann, W. Friesenbichler and G. R. Langecker. J. Appl. Polym. Sci. 111, 2253–2259 (2009). https://doi.org/10.1002/app.29163, Google ScholarCrossref
- 12. M. Kracalik, S. Laske, A. Witschnigg and C. Holzer, Rheol Acta 50, 937–944 (2011). https://doi.org/10.1007/s00397-011-0545-2, Google ScholarCrossref
- 13. M. Van Gurp and J. Palmen, Rheol. Bull. 67, 5–8 (1998). Google Scholar
- 14. S. Trinkle, P. Walter and C. Friedrich, Rheol. Acta 41, 103–113 (2002). https://doi.org/10.1007/s003970200010, Google ScholarCrossref, ISI
- 15. M. Kracalik, AIP Conference Proceedings, 1843, 050005-1–050005-5 (2017). https://doi.org/10.1063/1.4982997, Google ScholarScitation
Article Metrics
Views
18
Citations
Crossref
0
Web of Science
ISI
0
Altmetric
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.