No Access Submitted: 27 November 2018 Accepted: 04 January 2019 Published Online: 17 January 2019
Appl. Phys. Lett. 114, 021106 (2019);
We report a simple technique for the realization of fiber-based Fabry-Pérot microcavities with large Q/V values as well as high cavity-to-fiber coupling efficiencies. The open microcavity we demonstrate consists of a flat mirror and a concave mirror on the tip of a single mode optical fiber. Combining hydrofluoric acid chemical wet etching with CO2 laser reflow, we obtain a fiber-tip atomically smooth concave surface with a diameter of 4.7 μm determined by the fiber core size. The concave surface with a spherical profile is automatically aligned with the fiber core, which enables high cavity-to-fiber power coupling efficiency (higher than 90%) with an optimal fiber-tip mirror's radius of curvature based on numerical simulation results. After distributed-Bragg-reflector coating, we have realized a wavelength-tunable open microcavity with a quality factor Q exceeding 1000 and a mode volume V of 13.6 μm3, and laser emission is demonstrated from this microcavity.
We thank Dr. Yixiao Gao, Mr. Peizhen Xu, and Mr. Hao Wu for their great help in guidance and discussions. This work was supported by the National Basic Research Program of China (Program 973) (No. 2014CB921303), the National Natural Science Foundation of China (No. 61635009), and the Fundamental Research Funds for the Central Universities (No. 2018FZA5004). A. Rahimi-Iman acknowledges financial support by the German Federal Ministry of Education and Research (BMBF) in the frame of the German Academic Exchange Service's (DAAD) program Strategic Partnerships and Thematic Networks.
  1. 1. F. Vollmer, D. Braun, and A. Libchaber, Appl. Phys. Lett. 80, 4057 (2002)., Google ScholarScitation, ISI
  2. 2. K. Vahala, Nature 424, 839–846 (2003)., Google ScholarCrossref, ISI
  3. 3. T. Kippenberg and K. Vahala, Opt. Express 15, 17172–17205 (2007)., Google ScholarCrossref, ISI
  4. 4. K. Iga, IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000)., Google ScholarCrossref
  5. 5. R. Long, T. Steinmetz, P. Hommelhoff, W. Hänsel, T. W. Hänsch, and J. Reichel, Philos. Trans. R. Soc., A 361, 1375–1389 (2003)., Google ScholarCrossref
  6. 6. T. Steinmetz, Y. Colombe, D. Hunger, and T. W. Hänsch, Appl. Phys. Lett. 89, 111110 (2006)., Google ScholarScitation, ISI
  7. 7. M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005)., Google ScholarScitation, ISI
  8. 8. P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H. Ritsch, Phys. Rev. Lett. 79, 4974–4977 (1997)., Google ScholarCrossref
  9. 9. V. Vuletić and S. Chu, Phys. Rev. Lett. 84, 3787–3790 (2000)., Google ScholarCrossref
  10. 10. H. Takahashi, A. Wilson, A. R. Watson, F. Oručević, N. S. Smith, M. Keller, and W. Lange, New J. Phys. 15, 053011 (2013)., Google ScholarCrossref
  11. 11. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature 432, 197–200 (2004)., Google ScholarCrossref, ISI
  12. 12. G. Hernandez, J. P. Zhang, and Y. F. Zhu, Phys. Rev. A 76, 053814 (2007)., Google ScholarCrossref
  13. 13. J. Klaers, F. Schmitt, F. Vewinger, and M. Weitz, Nature 468, 545–548 (2010)., Google ScholarCrossref, ISI
  14. 14. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Richel, Nature 450, 272–276 (2007)., Google ScholarCrossref, ISI
  15. 15. P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Eur. Phys. J. D 36, 203–228 (2005)., Google ScholarCrossref
  16. 16. R. M. André, S. Pevec, M. Becker, J. Dellith, M. Rothhardt, M. B. Marques, D. Donlagic, H. Bartelt, and O. Frazão, Opt. Express 22, 13102–13108 (2014)., Google ScholarCrossref
  17. 17. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, Opt. Lett. 35, 3556–3558 (2010)., Google ScholarCrossref
  18. 18. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engle, T. Schröder, O. Benson, J. Reichel, and C. Becher, Appl. Phys. Lett. 105, 073113 (2014)., Google ScholarScitation, ISI
  19. 19. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, AIP Adv. 2, 012119 (2012)., Google ScholarScitation, ISI
  20. 20. L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, Appl. Phys. Lett. 105, 121105 (2014)., Google ScholarScitation, ISI
  21. 21. H. Takahashi, J. Morphew, F. Oručević, A. Noguchi, E. Kassa, and M. Keller, Opt. Express 22, 31317–31328 (2014)., Google ScholarCrossref
  22. 22. H. Kelkar, D. Wang, D. Martín-Cano, B. Hoffmann, S. Christiansen, S. Götzinger, and V. Sandoghdar, Phys. Rev. Appl. 4, 054010 (2015)., Google ScholarCrossref, ISI
  23. 23. M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, New J. Phys. 17, 013053 (2015)., Google ScholarCrossref, ISI
  24. 24. J. Benedikter, T. Hümmer, M. Mader, B. Schlederer, J. Reichel, T. W. Hänsch, and D. Hunger, New J. Phys. 17, 053051 (2015)., Google ScholarCrossref, ISI
  25. 25. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, New J. Phys. 12, 065038 (2010)., Google ScholarCrossref, ISI
  26. 26. B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129–1179 (2005)., Google ScholarCrossref, ISI
  27. 27. A. Müller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, Opt. Lett. 35, 2293–2295 (2010)., Google ScholarCrossref
  28. 28. B. Petrak, K. Konthasinghe, S. Perez, and A. Muller, Rev. Sci. Instrum. 82, 123112 (2011)., Google ScholarScitation, ISI
  1. © 2019 Author(s). Published under license by AIP Publishing.