ABSTRACT
Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS+ + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS+ is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS+ with Xe, CO, and O2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS+ + CO → Sm+ + COS exchange reaction are combined to yield D0(Sm+–S) = 3.37 ± 0.20 eV. The CO and O2 reactions also yield a SmSO+ product, with measured endothermicities that indicate D0(SSm+–O) = 3.73 ± 0.16 eV and D0(OSm+–S) = 1.38 ± 0.27 eV. The SmS+ bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS+, and for comparison, SmO, SmO+, and EuO.
ACKNOWLEDGMENTS
This material is based upon work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-16-1-0095. We thank the Center of High Performance Computing at the University of Utah for the generous allocation of computer time and the Extreme Science and Engineering Discovery Environment (XSEDE), Grant No. TG-CHE170012, for allocations on the regular, large, and extreme shared memory nodes at the Pittsburgh Supercomputing Center (PSC) at Carnegie Mellon University and allocations on the computer nodes at the San Diego Supercomputing Center (SDSC) at University of California San Diego. K.A.P. gratefully acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry Program through Grant No. DE-FG02-12ER16329.
- 1. P. B. Armentrout, R. M. Cox, B. C. Sweeny, S. G. Ard, N. S. Shuman, and A. A. Viggiano, “Lanthanides as catalysts: Guided ion beam and theoretical studies of Sm+ + COS,” J. Phys. Chem. A (submitted). Google Scholar
- 2. S. K. Loh, D. A. Hales, L. Lian, and P. B. Armentrout, J. Chem. Phys. 90, 5466–5485 (1989). https://doi.org/10.1063/1.456452, Google ScholarScitation, ISI
- 3. R. H. Schultz, K. C. Crellin, and P. B. Armentrout, J. Am. Chem. Soc. 113, 8590–8601 (1991). https://doi.org/10.1021/ja00023a003, Google ScholarCrossref
- 4. D. Gerlich, Adv. Chem. Phys. 82, 1–176 (1992). https://doi.org/10.1002/9780470141397.ch1, Google ScholarCrossref
- 5. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166–189 (1985). https://doi.org/10.1063/1.449799, Google ScholarScitation, ISI
- 6. P. B. Armentrout, Int. J. Mass Spectrom. 200, 219–241 (2000). https://doi.org/10.1016/s1387-3806(00)00310-9, Google ScholarCrossref, ISI
- 7. N. R. Daly, Rev. Sci. Instrum. 31, 264–267 (1960). https://doi.org/10.1063/1.1716953, Google ScholarScitation, ISI
- 8. W. J. Chesnavich and M. T. Bowers, J. Phys. Chem. 83, 900–905 (1979). https://doi.org/10.1021/j100471a004, Google ScholarCrossref, ISI
- 9. F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213–1228 (2001). https://doi.org/10.1063/1.1371958, Google ScholarScitation, ISI
- 10. N. Aristov and P. B. Armentrout, J. Am. Chem. Soc. 108, 1806–1819 (1986). https://doi.org/10.1021/ja00268a017, Google ScholarCrossref, ISI
- 11. P. B. Armentrout, in Advances in Gas Phase Ion Chemistry, edited by N. Adams and L. M. Babcock (JAI Press, Greenwich, Connecticut, 1992), Vol. 1, pp. 83–119. Google Scholar
- 12. C. Lifshitz, R. L. C. Wu, T. O. Tiernan, and D. T. Terwilliger, J. Chem. Phys. 68, 247–260 (1978). https://doi.org/10.1063/1.435489, Google ScholarScitation, ISI
- 13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, USA, 2009. Google Scholar
- 14. A. D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913, Google ScholarScitation, ISI
- 15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785–789 (1988). https://doi.org/10.1103/physrevb.37.785, Google ScholarCrossref, ISI
- 16. C. Möller and M. S. Plesset, Phys. Rev. 46, 618–622 (1934). https://doi.org/10.1103/physrev.46.618, Google ScholarCrossref
- 17. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479–483 (1989). https://doi.org/10.1016/s0009-2614(89)87395-6, Google ScholarCrossref, ISI
- 18. R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513–522 (1990). https://doi.org/10.1016/0009-2614(90)87031-l, Google ScholarCrossref, ISI
- 19. G. E. Scuseria and T. J. Lee, J. Chem. Phys. 93, 5851–5855 (1990). https://doi.org/10.1063/1.459684, Google ScholarScitation, ISI
- 20. T. D. Crawford and J. F. Stanton. Int. J. Quantum Chem. 70, 601–611 (1998). https://doi.org/10.1002/(sici)1097-461x(1998)70:4/5<601::aid-qua6>3.3.co;2-j, Google ScholarCrossref, ISI
- 21. M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. 90, 1730–1734 (1989). https://doi.org/10.1063/1.456066, Google ScholarScitation, ISI
- 22. J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, PA, 1996). Google Scholar
- 23. Q. Lu and K. A. Peterson, J. Chem. Phys. 145, 054111 (2016). https://doi.org/10.1063/1.4959280, Google ScholarScitation, ISI
- 24. M. Douglas and N. M. Kroll, Ann. Phys. 82, 89–155 (1974). https://doi.org/10.1016/0003-4916(74)90333-9, Google ScholarCrossref, ISI
- 25. M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945–10956 (2004). https://doi.org/10.1063/1.1818681, Google ScholarScitation, ISI
- 26. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045–1052 (2007). https://doi.org/10.1021/ci600510j, Google ScholarCrossref, ISI
- 27. D. Feller, J. Comput. Chem. 17, 1571–1586 (1996). https://doi.org/10.1002/jcc.9, Google ScholarCrossref, ISI
- 28. D. Feller, D. A. Dixon, and J. B. Nicholas, J. Phys. Chem. A 104, 11414–11419 (2000). https://doi.org/10.1021/jp002631l, Google ScholarCrossref, ISI
- 29. J. L. Dunham, Phys. Rev. 41, 721–731 (1932). https://doi.org/10.1103/physrev.41.721, Google ScholarCrossref
- 30. D. Feller, K. A. Peterson, and D. A. Dixon, J. Chem. Phys. 129, 204105 (2008). https://doi.org/10.1063/1.3008061, Google ScholarScitation, ISI
- 31. M. Vasiliu, K. A. Peterson, J. K. Gibson, and D. A. Dixon, J. Phys. Chem. A 119, 11422–11431 (2015). https://doi.org/10.1021/acs.jpca.5b08618, Google ScholarCrossref
- 32. T. H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
- 33. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796–6806 (1992). https://doi.org/10.1063/1.462569, Google ScholarScitation, ISI
- 34. W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48–53 (2001). https://doi.org/10.1063/1.1329891, Google ScholarScitation, ISI
- 35. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358–1371 (1993). https://doi.org/10.1063/1.464303, Google ScholarScitation, ISI
- 36. J. T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244–9253 (2001). https://doi.org/10.1063/1.1367373, Google ScholarScitation, ISI
- 37. K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548–10560 (2002). https://doi.org/10.1063/1.1520138, Google ScholarScitation, ISI
- 38. G. E. Scuseria, Chem. Phys. Lett. 176, 27–35 (1991). https://doi.org/10.1016/0009-2614(91)90005-t, Google ScholarCrossref, ISI
- 39. J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718–8733 (1993). https://doi.org/10.1063/1.464480, Google ScholarScitation, ISI
- 40. P. J. Knowles, C. Hampel, and H. J. Werner, J. Chem. Phys. 99, 5219–5227 (1993). https://doi.org/10.1063/1.465990, Google ScholarScitation, ISI
- 41. P. J. K. H.-J. Werner, G. Knizia, F. R. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hertzer, T. Hrenar, G. Jansen, C. Koppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net. Google Scholar
- 42. Z. Fang, Z. Lee, K. A. Peterson, and D. A. Dixon, J. Chem. Theory Comput. 12, 3583–3592 (2016). https://doi.org/10.1021/acs.jctc.6b00327, Google ScholarCrossref
- 43. H. J. A. Jensen, R. Bast, T. Saue, L. Visscher, and K. G. Dyall with contributions from V. Bakken, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto, DIRAC, a relativistic ab initio electronic structure program, release DIRAC15, 2015, see http://www.diracprogram.org. Google Scholar
- 44. K. G. Dyall, J. Chem. Phys. 100, 2118–2127 (1994). https://doi.org/10.1063/1.466508, Google ScholarScitation, ISI
- 45. T. Fleig, J. Olsen, and L. Visscher, J. Chem. Phys. 119, 2963–2971 (2003). https://doi.org/10.1063/1.1590636, Google ScholarScitation, ISI
- 46. T. Fleig, H. J. A. Jensen, J. Olsen, and L. Visscher, J. Chem. Phys. 124, 104106 (2006). https://doi.org/10.1063/1.2176609, Google ScholarScitation, ISI
- 47. S. Knecht, H. J. A. Jensen, and T. Fleig, J. Chem. Phys. 128, 014108 (2008). https://doi.org/10.1063/1.2805369, Google ScholarScitation, ISI
- 48. K. G. Dyall, C. W. Bauschlicher, D. W. Schwenke, and P. Pyykko, Chem. Phys. Lett. 348, 497–500 (2001). https://doi.org/10.1016/s0009-2614(01)01162-9, Google ScholarCrossref, ISI
- 49. P. Pyykko and L.-B. Zhao, J. Phys. B: At., Mol. Opt. Phys. 36, 1469–1478 (2003). https://doi.org/10.1088/0953-4075/36/8/302, Google ScholarCrossref
- 50. E. Goos, A. Burcat, and B. Ruscic, “Extended third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables,” Report Nos. ANL-05/20 and TAE 960 Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, 2016. Google Scholar
- 51. R. M. Cox, J. Kim, P. B. Armentrout, J. Bartlett, R. A. VanGundy, M. C. Heaven, S. G. Ard, J. J. Melko, N. S. Shuman, and A. A. Viggiano, J. Chem. Phys. 142, 134307 (2015). https://doi.org/10.1063/1.4916396, Google ScholarScitation, ISI
- 52. M. Demireva and P. B. Armentrout, “Activation of CO2 by gadolinium cation (Gd+): Energetics and mechanism from experiment and theory,” Top. Catal. (to be published). https://doi.org/10.1007/s11244-017-0858-1, Google Scholar
- 53. D. A. Prinslow and P. B. Armentrout, J. Chem. Phys. 94, 3563–3567 (1991). https://doi.org/10.1063/1.459779, Google ScholarScitation
- 54. J. H. D. Eland and J. Berkowitz, J. Chem. Phys. 70, 5151–5156 (1979). https://doi.org/10.1063/1.437355, Google ScholarScitation
- 55. P. B. Armentrout and R. M. Cox, Phys. Chem. Chem. Phys. 19, 11075–11088 (2017). https://doi.org/10.1039/c7cp00914c, Google ScholarCrossref
- 56. M. A. Garcia and M. D. Morse, J. Chem. Phys. 135, 114304 (2011). https://doi.org/10.1063/1.3633694, Google ScholarScitation, ISI
- 57. P. B. Armentrout, J. Chem. Phys. 139, 084305 (2013). https://doi.org/10.1063/1.4818642, Google ScholarScitation, ISI
- 58. P. B. Armentrout and F.-X. Li, J. Phys. Chem. A 117, 7754–7766 (2013). https://doi.org/10.1021/jp4063143, Google ScholarCrossref
- 59. J. Kim, R. M. Cox, and P. B. Armentrout, J. Chem. Phys. 145, 194305 (2016). https://doi.org/10.1063/1.4967820, Google ScholarScitation, ISI
- 60. C. S. Hinton, M. Citir, and P. B. Armentrout, Int. J. Mass Spectrom. 78, 1157–1173 (2013). https://doi.org/10.1002/cplu.201300147, Google ScholarCrossref
- 61. R. M. Cox, P. B. Armentrout, and W. A. de Jong, Inorg. Chem. 54, 3584–3599 (2015). https://doi.org/10.1021/acs.inorgchem.5b00137, Google ScholarCrossref
- 62. R. M. Cox, P. B. Armentrout, and W. A. de Jong, J. Phys. Chem. B 120, 1601–1614 (2016). https://doi.org/10.1021/acs.jpcb.5b08008, Google ScholarCrossref
- 63. R. M. Cox, M. Citir, P. B. Armentrout, S. R. Battey, and K. A. Peterson, J. Chem. Phys. 144, 184309 (2016). https://doi.org/10.1063/1.4948812, Google ScholarScitation, ISI
- 64. M. Demireva, J. Kim, and P. B. Armentrout, J. Phys. Chem. A 120, 8550–8563 (2016). https://doi.org/10.1021/acs.jpca.6b09309, Google ScholarCrossref, ISI
- 65. M. Demireva and P. B. Armentrout, J. Chem. Phys. 146, 174302 (2017). https://doi.org/10.1063/1.4982683, Google ScholarScitation, ISI
- 66. H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, Amsterdam, 2004). Google ScholarCrossref
- 67. C. Froese Fischer, Comput. Phys. Commun. 43, 355–365 (1987). https://doi.org/10.1016/0010-4655(87)90053-1, Google ScholarCrossref
- 68. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803–5814 (1988). https://doi.org/10.1063/1.455556, Google ScholarScitation, ISI
- 69. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61–72 (1974). https://doi.org/10.1002/qua.560080106, Google ScholarCrossref, ISI
- 70. T. Jayasekharan, M. A. N. Razvi, and G. L. Bhale, J. Phys. B: At. Mol. Opt. Phys. 33, 3123–3136 (2000). https://doi.org/10.1088/0953-4075/33/16/314, Google ScholarCrossref
- 71. S. G. Ard, N. S. Shuman, O. Martinez, P. B. Armentrout, and A. A. Viggiano, J. Chem. Phys. 145, 084302 (2016). https://doi.org/10.1063/1.4961263, Google ScholarScitation, ISI
- 72. S. G. Ard, N. S. Shuman, J. O. Martinez, M. T. Brumbach, and A. A. Viggiano, J. Chem. Phys. 143, 204303 (2015). https://doi.org/10.1063/1.4934995, Google ScholarScitation, ISI
- 73. R. G. Caton, T. R. Pedersen, K. M. Groves, J. Hines, P. S. Cannon, N. Jackson-Booth, R. T. Parris, J. M. Holmes, Y.-J. Su, E. V. Mishin, P. A. Roddy, A. A. Viggiano, N. S. Shuman, S. G. Ard, P. A. Bernhardt, C. L. Siefring, J. Retterer, E. Kudeki, and P. M. Reyes, Radio Sci. 52, 539–558 (2017). https://doi.org/10.1002/2016rs005988, Google ScholarCrossref
- 74. P. A. Bernhardt, C. L. Siefring, S. J. Briczinski, A. Viggiano, R. G. Caton, T. R. Pedersen, J. M. Holmes, S. Ard, N. Shuman, and K. M. Groves, Radio Sci. 52, 559–577 (2017). https://doi.org/10.1002/2016rs006078, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.


