No Access Submitted: 20 October 2017 Accepted: 13 November 2017 Published Online: 05 December 2017
J. Chem. Phys. 147, 214307 (2017); https://doi.org/10.1063/1.5009916
more...View Affiliations
View Contributors
  • P. B. Armentrout
  • Maria Demireva
  • Kirk A. Peterson
Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS+ + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS+ is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS+ with Xe, CO, and O2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS+ + CO → Sm+ + COS exchange reaction are combined to yield D0(Sm+–S) = 3.37 ± 0.20 eV. The CO and O2 reactions also yield a SmSO+ product, with measured endothermicities that indicate D0(SSm+–O) = 3.73 ± 0.16 eV and D0(OSm+–S) = 1.38 ± 0.27 eV. The SmS+ bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS+, and for comparison, SmO, SmO+, and EuO.
This material is based upon work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-16-1-0095. We thank the Center of High Performance Computing at the University of Utah for the generous allocation of computer time and the Extreme Science and Engineering Discovery Environment (XSEDE), Grant No. TG-CHE170012, for allocations on the regular, large, and extreme shared memory nodes at the Pittsburgh Supercomputing Center (PSC) at Carnegie Mellon University and allocations on the computer nodes at the San Diego Supercomputing Center (SDSC) at University of California San Diego. K.A.P. gratefully acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry Program through Grant No. DE-FG02-12ER16329.
  1. 1. P. B. Armentrout, R. M. Cox, B. C. Sweeny, S. G. Ard, N. S. Shuman, and A. A. Viggiano, “Lanthanides as catalysts: Guided ion beam and theoretical studies of Sm+ + COS,” J. Phys. Chem. A (submitted). Google Scholar
  2. 2. S. K. Loh, D. A. Hales, L. Lian, and P. B. Armentrout, J. Chem. Phys. 90, 5466–5485 (1989). https://doi.org/10.1063/1.456452, Google ScholarScitation, ISI
  3. 3. R. H. Schultz, K. C. Crellin, and P. B. Armentrout, J. Am. Chem. Soc. 113, 8590–8601 (1991). https://doi.org/10.1021/ja00023a003, Google ScholarCrossref
  4. 4. D. Gerlich, Adv. Chem. Phys. 82, 1–176 (1992). https://doi.org/10.1002/9780470141397.ch1, Google ScholarCrossref
  5. 5. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166–189 (1985). https://doi.org/10.1063/1.449799, Google ScholarScitation, ISI
  6. 6. P. B. Armentrout, Int. J. Mass Spectrom. 200, 219–241 (2000). https://doi.org/10.1016/s1387-3806(00)00310-9, Google ScholarCrossref, ISI
  7. 7. N. R. Daly, Rev. Sci. Instrum. 31, 264–267 (1960). https://doi.org/10.1063/1.1716953, Google ScholarScitation, ISI
  8. 8. W. J. Chesnavich and M. T. Bowers, J. Phys. Chem. 83, 900–905 (1979). https://doi.org/10.1021/j100471a004, Google ScholarCrossref, ISI
  9. 9. F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213–1228 (2001). https://doi.org/10.1063/1.1371958, Google ScholarScitation, ISI
  10. 10. N. Aristov and P. B. Armentrout, J. Am. Chem. Soc. 108, 1806–1819 (1986). https://doi.org/10.1021/ja00268a017, Google ScholarCrossref, ISI
  11. 11. P. B. Armentrout, in Advances in Gas Phase Ion Chemistry, edited by N. Adams and L. M. Babcock (JAI Press, Greenwich, Connecticut, 1992), Vol. 1, pp. 83–119. Google Scholar
  12. 12. C. Lifshitz, R. L. C. Wu, T. O. Tiernan, and D. T. Terwilliger, J. Chem. Phys. 68, 247–260 (1978). https://doi.org/10.1063/1.435489, Google ScholarScitation, ISI
  13. 13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, USA, 2009. Google Scholar
  14. 14. A. D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913, Google ScholarScitation, ISI
  15. 15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785–789 (1988). https://doi.org/10.1103/physrevb.37.785, Google ScholarCrossref, ISI
  16. 16. C. Möller and M. S. Plesset, Phys. Rev. 46, 618–622 (1934). https://doi.org/10.1103/physrev.46.618, Google ScholarCrossref
  17. 17. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479–483 (1989). https://doi.org/10.1016/s0009-2614(89)87395-6, Google ScholarCrossref, ISI
  18. 18. R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513–522 (1990). https://doi.org/10.1016/0009-2614(90)87031-l, Google ScholarCrossref, ISI
  19. 19. G. E. Scuseria and T. J. Lee, J. Chem. Phys. 93, 5851–5855 (1990). https://doi.org/10.1063/1.459684, Google ScholarScitation, ISI
  20. 20. T. D. Crawford and J. F. Stanton. Int. J. Quantum Chem. 70, 601–611 (1998). https://doi.org/10.1002/(sici)1097-461x(1998)70:4/5<601::aid-qua6>3.3.co;2-j, Google ScholarCrossref, ISI
  21. 21. M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. 90, 1730–1734 (1989). https://doi.org/10.1063/1.456066, Google ScholarScitation, ISI
  22. 22. J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, PA, 1996). Google Scholar
  23. 23. Q. Lu and K. A. Peterson, J. Chem. Phys. 145, 054111 (2016). https://doi.org/10.1063/1.4959280, Google ScholarScitation, ISI
  24. 24. M. Douglas and N. M. Kroll, Ann. Phys. 82, 89–155 (1974). https://doi.org/10.1016/0003-4916(74)90333-9, Google ScholarCrossref, ISI
  25. 25. M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945–10956 (2004). https://doi.org/10.1063/1.1818681, Google ScholarScitation, ISI
  26. 26. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045–1052 (2007). https://doi.org/10.1021/ci600510j, Google ScholarCrossref, ISI
  27. 27. D. Feller, J. Comput. Chem. 17, 1571–1586 (1996). https://doi.org/10.1002/jcc.9, Google ScholarCrossref, ISI
  28. 28. D. Feller, D. A. Dixon, and J. B. Nicholas, J. Phys. Chem. A 104, 11414–11419 (2000). https://doi.org/10.1021/jp002631l, Google ScholarCrossref, ISI
  29. 29. J. L. Dunham, Phys. Rev. 41, 721–731 (1932). https://doi.org/10.1103/physrev.41.721, Google ScholarCrossref
  30. 30. D. Feller, K. A. Peterson, and D. A. Dixon, J. Chem. Phys. 129, 204105 (2008). https://doi.org/10.1063/1.3008061, Google ScholarScitation, ISI
  31. 31. M. Vasiliu, K. A. Peterson, J. K. Gibson, and D. A. Dixon, J. Phys. Chem. A 119, 11422–11431 (2015). https://doi.org/10.1021/acs.jpca.5b08618, Google ScholarCrossref
  32. 32. T. H. Dunning, J. Chem. Phys. 90, 1007–1023 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
  33. 33. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796–6806 (1992). https://doi.org/10.1063/1.462569, Google ScholarScitation, ISI
  34. 34. W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48–53 (2001). https://doi.org/10.1063/1.1329891, Google ScholarScitation, ISI
  35. 35. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358–1371 (1993). https://doi.org/10.1063/1.464303, Google ScholarScitation, ISI
  36. 36. J. T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244–9253 (2001). https://doi.org/10.1063/1.1367373, Google ScholarScitation, ISI
  37. 37. K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548–10560 (2002). https://doi.org/10.1063/1.1520138, Google ScholarScitation, ISI
  38. 38. G. E. Scuseria, Chem. Phys. Lett. 176, 27–35 (1991). https://doi.org/10.1016/0009-2614(91)90005-t, Google ScholarCrossref, ISI
  39. 39. J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718–8733 (1993). https://doi.org/10.1063/1.464480, Google ScholarScitation, ISI
  40. 40. P. J. Knowles, C. Hampel, and H. J. Werner, J. Chem. Phys. 99, 5219–5227 (1993). https://doi.org/10.1063/1.465990, Google ScholarScitation, ISI
  41. 41. P. J. K. H.-J. Werner, G. Knizia, F. R. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hertzer, T. Hrenar, G. Jansen, C. Koppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net. Google Scholar
  42. 42. Z. Fang, Z. Lee, K. A. Peterson, and D. A. Dixon, J. Chem. Theory Comput. 12, 3583–3592 (2016). https://doi.org/10.1021/acs.jctc.6b00327, Google ScholarCrossref
  43. 43. H. J. A. Jensen, R. Bast, T. Saue, L. Visscher, and K. G. Dyall with contributions from V. Bakken, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto, DIRAC, a relativistic ab initio electronic structure program, release DIRAC15, 2015, see http://www.diracprogram.org. Google Scholar
  44. 44. K. G. Dyall, J. Chem. Phys. 100, 2118–2127 (1994). https://doi.org/10.1063/1.466508, Google ScholarScitation, ISI
  45. 45. T. Fleig, J. Olsen, and L. Visscher, J. Chem. Phys. 119, 2963–2971 (2003). https://doi.org/10.1063/1.1590636, Google ScholarScitation, ISI
  46. 46. T. Fleig, H. J. A. Jensen, J. Olsen, and L. Visscher, J. Chem. Phys. 124, 104106 (2006). https://doi.org/10.1063/1.2176609, Google ScholarScitation, ISI
  47. 47. S. Knecht, H. J. A. Jensen, and T. Fleig, J. Chem. Phys. 128, 014108 (2008). https://doi.org/10.1063/1.2805369, Google ScholarScitation, ISI
  48. 48. K. G. Dyall, C. W. Bauschlicher, D. W. Schwenke, and P. Pyykko, Chem. Phys. Lett. 348, 497–500 (2001). https://doi.org/10.1016/s0009-2614(01)01162-9, Google ScholarCrossref, ISI
  49. 49. P. Pyykko and L.-B. Zhao, J. Phys. B: At., Mol. Opt. Phys. 36, 1469–1478 (2003). https://doi.org/10.1088/0953-4075/36/8/302, Google ScholarCrossref
  50. 50. E. Goos, A. Burcat, and B. Ruscic, “Extended third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables,” Report Nos. ANL-05/20 and TAE 960 Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, 2016. Google Scholar
  51. 51. R. M. Cox, J. Kim, P. B. Armentrout, J. Bartlett, R. A. VanGundy, M. C. Heaven, S. G. Ard, J. J. Melko, N. S. Shuman, and A. A. Viggiano, J. Chem. Phys. 142, 134307 (2015). https://doi.org/10.1063/1.4916396, Google ScholarScitation, ISI
  52. 52. M. Demireva and P. B. Armentrout, “Activation of CO2 by gadolinium cation (Gd+): Energetics and mechanism from experiment and theory,” Top. Catal. (to be published). https://doi.org/10.1007/s11244-017-0858-1, Google Scholar
  53. 53. D. A. Prinslow and P. B. Armentrout, J. Chem. Phys. 94, 3563–3567 (1991). https://doi.org/10.1063/1.459779, Google ScholarScitation
  54. 54. J. H. D. Eland and J. Berkowitz, J. Chem. Phys. 70, 5151–5156 (1979). https://doi.org/10.1063/1.437355, Google ScholarScitation
  55. 55. P. B. Armentrout and R. M. Cox, Phys. Chem. Chem. Phys. 19, 11075–11088 (2017). https://doi.org/10.1039/c7cp00914c, Google ScholarCrossref
  56. 56. M. A. Garcia and M. D. Morse, J. Chem. Phys. 135, 114304 (2011). https://doi.org/10.1063/1.3633694, Google ScholarScitation, ISI
  57. 57. P. B. Armentrout, J. Chem. Phys. 139, 084305 (2013). https://doi.org/10.1063/1.4818642, Google ScholarScitation, ISI
  58. 58. P. B. Armentrout and F.-X. Li, J. Phys. Chem. A 117, 7754–7766 (2013). https://doi.org/10.1021/jp4063143, Google ScholarCrossref
  59. 59. J. Kim, R. M. Cox, and P. B. Armentrout, J. Chem. Phys. 145, 194305 (2016). https://doi.org/10.1063/1.4967820, Google ScholarScitation, ISI
  60. 60. C. S. Hinton, M. Citir, and P. B. Armentrout, Int. J. Mass Spectrom. 78, 1157–1173 (2013). https://doi.org/10.1002/cplu.201300147, Google ScholarCrossref
  61. 61. R. M. Cox, P. B. Armentrout, and W. A. de Jong, Inorg. Chem. 54, 3584–3599 (2015). https://doi.org/10.1021/acs.inorgchem.5b00137, Google ScholarCrossref
  62. 62. R. M. Cox, P. B. Armentrout, and W. A. de Jong, J. Phys. Chem. B 120, 1601–1614 (2016). https://doi.org/10.1021/acs.jpcb.5b08008, Google ScholarCrossref
  63. 63. R. M. Cox, M. Citir, P. B. Armentrout, S. R. Battey, and K. A. Peterson, J. Chem. Phys. 144, 184309 (2016). https://doi.org/10.1063/1.4948812, Google ScholarScitation, ISI
  64. 64. M. Demireva, J. Kim, and P. B. Armentrout, J. Phys. Chem. A 120, 8550–8563 (2016). https://doi.org/10.1021/acs.jpca.6b09309, Google ScholarCrossref, ISI
  65. 65. M. Demireva and P. B. Armentrout, J. Chem. Phys. 146, 174302 (2017). https://doi.org/10.1063/1.4982683, Google ScholarScitation, ISI
  66. 66. H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules (Elsevier, Amsterdam, 2004). Google ScholarCrossref
  67. 67. C. Froese Fischer, Comput. Phys. Commun. 43, 355–365 (1987). https://doi.org/10.1016/0010-4655(87)90053-1, Google ScholarCrossref
  68. 68. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803–5814 (1988). https://doi.org/10.1063/1.455556, Google ScholarScitation, ISI
  69. 69. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61–72 (1974). https://doi.org/10.1002/qua.560080106, Google ScholarCrossref, ISI
  70. 70. T. Jayasekharan, M. A. N. Razvi, and G. L. Bhale, J. Phys. B: At. Mol. Opt. Phys. 33, 3123–3136 (2000). https://doi.org/10.1088/0953-4075/33/16/314, Google ScholarCrossref
  71. 71. S. G. Ard, N. S. Shuman, O. Martinez, P. B. Armentrout, and A. A. Viggiano, J. Chem. Phys. 145, 084302 (2016). https://doi.org/10.1063/1.4961263, Google ScholarScitation, ISI
  72. 72. S. G. Ard, N. S. Shuman, J. O. Martinez, M. T. Brumbach, and A. A. Viggiano, J. Chem. Phys. 143, 204303 (2015). https://doi.org/10.1063/1.4934995, Google ScholarScitation, ISI
  73. 73. R. G. Caton, T. R. Pedersen, K. M. Groves, J. Hines, P. S. Cannon, N. Jackson-Booth, R. T. Parris, J. M. Holmes, Y.-J. Su, E. V. Mishin, P. A. Roddy, A. A. Viggiano, N. S. Shuman, S. G. Ard, P. A. Bernhardt, C. L. Siefring, J. Retterer, E. Kudeki, and P. M. Reyes, Radio Sci. 52, 539–558 (2017). https://doi.org/10.1002/2016rs005988, Google ScholarCrossref
  74. 74. P. A. Bernhardt, C. L. Siefring, S. J. Briczinski, A. Viggiano, R. G. Caton, T. R. Pedersen, J. M. Holmes, S. Ard, N. Shuman, and K. M. Groves, Radio Sci. 52, 559–577 (2017). https://doi.org/10.1002/2016rs006078, Google ScholarCrossref
  1. © 2017 Author(s). Published by AIP Publishing.