Free Published Online: 12 October 2017
AIP Conference Proceedings 1895, 120002 (2017);
more...View Affiliations
View Contributors
  • E. A. Berendeev
  • G. I. Dudnikova
  • A. A. Efimova
In this paper, the processes of electromagnetic radiation generation as a result of the interaction of a relativistic electron beam with hydrogen and argon plasma are studied on the basis of numerical modeling by the particle-in-cells method (PIC). Series of numerical experiments for different background plasma parameters, beam and magnetic field have been performed using modern computer systems with massively parallel architecture. Estimates of the radiation efficiency for both the initially homogeneous plasma and for longitudinal density modulation are obtained. It is shown that the change in the plasma density due to the development of the modulation instability makes it possible to increase substantially the power of the generated sub-THz radiation. The parameters used in numerical experiments correspond to the conditions of laboratory experiments on GOL-3 facility (BINP SB RAS, Novosibirsk, Russia).
  1. 1. S.V. Polosatkin, V. Batkin, A. Burdakov, V. Burmasov, I. Ivanov, P. Kalinin, I. Kotelnikov, K. Mekler, M. Minaylo, A. Murasev, V. Postupaev, E. Sidorov, and N. Sorokina, “Experimental study of coupling of low-frequency electromagnetic waves with plasma in strong magnetic field,” in OS2016, AIP Conference Proceedings 1771, edited by A. Arakcheev and A. Sudnikov, (American Institute of Physics, Melville, NY, 2016) paper 030027, 6p. Google ScholarScitation
  2. 2. I. A. Ivanov, A. V. Burdakov, V. S. Burmasov, K. N. Kuklin, M. A. Makarov, K. I. Mekler, S. V. Polosatkin, V. V. Postupaev, A. F. Rovenskikh, E. N. Sidorov, S. L. Sinitsky, and A. V. Sudnikov (2017) Plasma Physics Reports 43, 119–128., Google ScholarCrossref
  3. 3. I.V. Timofeev, V.V. Annenkov, and A.V. Arzhannikov (2015) Phys. Plasmas 22, 113109., Google ScholarScitation, ISI
  4. 4. V.V. Annenkov, I.V. Timofeev, and E.P. Volchok (2016) Phys. Plasmas 23, 053101., Google ScholarScitation, ISI
  5. 5. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, Bristol, UK, 1991). Google ScholarCrossref
  6. 6. Y. A. Berezin and V. A. Vshivkov, Particles Method in the Dynamics of a Rarefied Plasma (Nauka, Novosibirsk, 1980). [in Russian] Google Scholar
  7. 7. R.W. Hockney, and J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, Florida, USA, 1988). Google ScholarCrossref
  8. 8. J.P. Boris, “Relativistic plasma simulation – optimization of a hybrid code,” in Fourth Conference on Numer-ical Simulation of Plasmas, Washington, 1970, pp. 3–67. Google Scholar
  9. 9. K. S. Yee (1966) IEEE Trans. Antenn. Propagat. AP-14, 302–307. Google Scholar
  10. 10. J. Villasenor and O. Buneman (1992) Comput. Phys. 69, 306–316., Google ScholarCrossref
  11. 11. G. Mur (1981) IEEE Transactions on Electromagnetic Compatibility EMC-23(4), 377–382., Google ScholarCrossref
  12. 12. E. A. Berendeev, G. I. Dudnikova, A. A. Efimova, A. V. Ivanov, and V. A. Vshivkov, “Computer simulation of cylindrical plasma target trap with inverse magnetic mirrors,” in OS2016, AIP Conference Proceedings 1771, edited by A. Arakcheev and A. Sudnikov, (American Institute of Physics, Melville, NY, 2016) paper 030009, 5p. Google ScholarScitation
  13. 13. A. A. Efimova, E. A. Berendeev, G. I. Dudnikova, and V. A. Vshivkov, “Numerical simulation of nonlinear processes in a beam-plasma system,” in AMiTaNS’15 AIP Conference Proceedings 1684, edited by M.D. Todorov (American Institute of Physics, Melville, NY, 2015), paper 100001, 8p. Google ScholarScitation
  1. © 2017 Author(s). Published by AIP Publishing.