No Access Submitted: 24 July 2017 Accepted: 07 September 2017 Published Online: 27 September 2017
J. Chem. Phys. 147, 124306 (2017); https://doi.org/10.1063/1.4997415
more...View Affiliations
View Contributors
  • Christopher P. McNary
  • P. B. Armentrout
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N–N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.
This work was supported by the National Science Foundation, Grant Nos. CHE-1359769 and CHE-1664618, with partial support from ENSCO, Inc. We thank the Center of High Performance Computing at the University of Utah for the generous allocation of computer time and the Extreme Science and Engineering Discovery Environment (XSEDE), Grant No. TG-CHE170012, for allocations on the large shared-memory cluster at Pittsburgh Supercomputing Center at Carnegie Mellon University.
The authors declare no competing financial interest.
  1. 1. J. A. Gardner, R. A. Dressler, R. H. Salter et al., J. Phys. Chem. 96, 4210 (1992). https://doi.org/10.1021/j100190a021, Google ScholarCrossref, ISI
  2. 2. G. Lunn, E. B. Sansone, and L. K. Keefer, Environ. Sci. Technol. 17, 240 (1983). https://doi.org/10.1021/es00110a012, Google ScholarCrossref, ISI
  3. 3. G. V. Buxton and C. R. Stuart, J. Chem. Soc., Faraday Trans. 92, 1519 (1996). https://doi.org/10.1039/ft9969201519, Google ScholarCrossref
  4. 4. M. Zhang, R. Cheng, Z. Chen et al., Int. J. Hydrogen Energy 30, 1081 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.014, Google ScholarCrossref, ISI
  5. 5. S. G. Pakdehi, M. Salimi, and M. Rasoolzadeh, Res. Appl. Mech. Eng. 3, 21 (2014), http://www.seipub.org/rame. Google Scholar
  6. 6. J.-P. Schirmann and P. Bourdauducq, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2000). Google Scholar
  7. 7. E. L. Øiestad and E. Uggerud, Int. J. Mass Spectrom. Ion Processes 165-166, 39 (1997). https://doi.org/10.1016/s0168-1176(97)00153-5, Google ScholarCrossref, ISI
  8. 8. R. Branko, E. P. Reinhardt, L. Gregor von et al., J. Phys.: Conf. Ser. 16, 561 (2005). https://doi.org/10.1088/1742-6596/16/1/078, Google ScholarCrossref
  9. 9. B. Ruscic, D. Feller, and K. A. Peterson, Theor. Chem. Acc. 133, 1415 (2013). https://doi.org/10.1007/s00214-013-1415-z, Google ScholarCrossref, ISI
  10. 10. B. Ruscic and D. H. Bross, ATcT.anl.gov, 2016. Google Scholar
  11. 11. D. Feller, D. H. Bross, and B. Ruscic, J. Phys. Chem. A 121, 6187 (2017). https://doi.org/10.1021/acs.jpca.7b06017, Google ScholarCrossref, ISI
  12. 12. S. J. Dunlavey, J. M. Dyke, N. Jonathan et al., Mol. Phys. 39, 1121 (1980). https://doi.org/10.1080/00268978000100931, Google ScholarCrossref, ISI
  13. 13. S. T. Gibson, J. P. Greene, and J. Berkowitz, J. Chem. Phys. 83, 4319 (1985). https://doi.org/10.1063/1.449045, Google ScholarScitation, ISI
  14. 14. E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998). https://doi.org/10.1063/1.556018, Google ScholarScitation, ISI
  15. 15. J. Biesner, L. Schnieder, G. Ahlers et al., J. Chem. Phys. 91, 2901 (1989). https://doi.org/10.1063/1.457644, Google ScholarScitation, ISI
  16. 16. S. Willitsch, J. M. Dyke, and F. Merkt, Mol. Phys. 102, 1543 (2004). https://doi.org/10.1080/00268970410001725855, Google ScholarCrossref, ISI
  17. 17. C. P. McNary and P. B. Armentrout, J. Chem. Phys. 145, 214311 (2016). https://doi.org/10.1063/1.4971238, Google ScholarScitation, ISI
  18. 18. C. P. McNary and P. B. Armentrout, J. Phys. Chem. A 120, 9690 (2016). https://doi.org/10.1021/acs.jpca.6b09318, Google ScholarCrossref, ISI
  19. 19. S. A. Shaffer, D. C. Prior, G. A. Anderson et al., Anal. Chem. 70, 4111 (1998). https://doi.org/10.1021/ac9802170, Google ScholarCrossref, ISI
  20. 20. S. A. Shaffer, A. Tolmachev, D. C. Prior et al., Anal. Chem. 71, 2957 (1999). https://doi.org/10.1021/ac990346w, Google ScholarCrossref, ISI
  21. 21. T. Kim, A. V. Tolmachev, R. Harkewicz et al., Anal. Chem. 72, 2247 (2000). https://doi.org/10.1021/ac991412x, Google ScholarCrossref, ISI
  22. 22. R. M. Moision and P. B. Armentrout, J. Am. Soc. Mass Spectrom. 18, 1124 (2007). https://doi.org/10.1016/j.jasms.2007.03.011, Google ScholarCrossref, ISI
  23. 23. D. R. Carl, R. M. Moision, and P. B. Armentrout, Int. J. Mass Spectrom. 265, 308 (2007). https://doi.org/10.1016/j.ijms.2007.03.008, Google ScholarCrossref, ISI
  24. 24. A. L. Heaton, S. J. Ye, and P. B. Armentrout, J. Phys. Chem. A 112, 3328 (2008). https://doi.org/10.1021/jp800439j, Google ScholarCrossref, ISI
  25. 25. A. L. Heaton, R. M. Moision, and P. B. Armentrout, J. Phys. Chem. A 112, 3319 (2008). https://doi.org/10.1021/jp711649g, Google ScholarCrossref, ISI
  26. 26. D. R. Carl, R. M. Moision, and P. B. Armentrout, J. Am. Soc. Mass Spectrom. 20, 2312 (2009). https://doi.org/10.1016/j.jasms.2009.08.024, Google ScholarCrossref, ISI
  27. 27. T. E. Cooper and P. B. Armentrout, Chem. Phys. Lett. 486, 1 (2010). https://doi.org/10.1016/j.cplett.2009.12.053, Google ScholarCrossref, ISI
  28. 28. D. R. Carl, B. K. Chatterjee, and P. B. Armentrout, J. Chem. Phys. 132, 044303 (2010). https://doi.org/10.1063/1.3292646, Google ScholarScitation, ISI
  29. 29. J. E. Carpenter, C. P. McNary, A. Furin et al., J. Am. Soc. Mass Spectrom. 28, 1876 (2017). https://doi.org/10.1007/s13361-017-1693-0, Google ScholarCrossref, ISI
  30. 30. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166 (1985). https://doi.org/10.1063/1.449799, Google ScholarScitation, ISI
  31. 31. E. Teloy and D. Gerlich, Chem. Phys. 4, 417 (1974). https://doi.org/10.1016/0301-0104(74)85008-1, Google ScholarCrossref, ISI
  32. 32. N. R. Daly, Rev. Sci. Instrum. 31, 264 (1960). https://doi.org/10.1063/1.1716953, Google ScholarScitation, ISI
  33. 33. F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001). https://doi.org/10.1063/1.1371958, Google ScholarScitation, ISI
  34. 34. D. A. Hales, L. Lian, and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 102, 269 (1990). https://doi.org/10.1016/0168-1176(90)80065-b, Google ScholarCrossref, ISI
  35. 35. S. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973). https://doi.org/10.1063/1.1679522, Google ScholarScitation, ISI
  36. 36. T. Beyer and D. F. Swinehart, Commun. ACM 16, 379 (1973). https://doi.org/10.1145/362248.362275, Google ScholarCrossref, ISI
  37. 37. S. E. Stein and B. S. Rabinovitch, Chem. Phys. Lett. 49, 183 (1977). https://doi.org/10.1016/0009-2614(77)80471-5, Google ScholarCrossref, ISI
  38. 38. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, London, 1990). Google Scholar
  39. 39. D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996). https://doi.org/10.1021/jp953748q, Google ScholarCrossref, ISI
  40. 40. K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions, 2nd ed. (Wiley, New York, 1996). Google Scholar
  41. 41. M. T. Rodgers, K. M. Ervin, and P. B. Armentrout, J. Chem. Phys. 106, 4499 (1997). https://doi.org/10.1063/1.473494, Google ScholarScitation, ISI
  42. 42. M. T. Rodgers and P. B. Armentrout, J. Chem. Phys. 109, 1787 (1998). https://doi.org/10.1063/1.476754, Google ScholarScitation, ISI
  43. 43. P. B. Armentrout and J. Simons, J. Am. Chem. Soc. 114, 8627 (1992). https://doi.org/10.1021/ja00048a042, Google ScholarCrossref, ISI
  44. 44. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, USA, 2016. Google Scholar
  45. 45. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902, Google ScholarScitation, ISI
  46. 46. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913, Google ScholarScitation, ISI
  47. 47. M. K. Kesharwani, B. Brauer, and J. M. L. Martin, J. Phys. Chem. A 119, 1701 (2015). https://doi.org/10.1021/jp508422u, Google ScholarCrossref, ISI
  48. 48. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934). https://doi.org/10.1103/physrev.46.618, Google ScholarCrossref
  49. 49. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990). https://doi.org/10.1016/0009-2614(90)80029-d, Google ScholarCrossref, ISI
  50. 50. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990). https://doi.org/10.1016/0009-2614(90)80030-h, Google ScholarCrossref, ISI
  51. 51. M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994). https://doi.org/10.1016/0009-2614(94)00116-2, Google ScholarCrossref, ISI
  52. 52. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988). https://doi.org/10.1016/0009-2614(88)85250-3, Google ScholarCrossref, ISI
  53. 53. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759, Google ScholarCrossref, ISI
  54. 54. J. Cizek, Advances in Chemical Physics (Wiley Interscience, New York, 1969), Vol. 14. Google Scholar
  55. 55. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982). https://doi.org/10.1063/1.443164, Google ScholarScitation, ISI
  56. 56. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987). https://doi.org/10.1063/1.453520, Google ScholarScitation, ISI
  57. 57. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382 (1988). https://doi.org/10.1063/1.455269, Google ScholarScitation, ISI
  58. 58. G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys. 90, 3700 (1989). https://doi.org/10.1063/1.455827, Google ScholarScitation, ISI
  59. 59. C. Schwartz, Methods in Computational Physics (Academic Press, New York, 1963), Vol. 2. Google Scholar
  60. 60. D. Feller, D. A. Dixon, and J. B. Nicholas, J. Phys. Chem. A 104, 11414 (2000). https://doi.org/10.1021/jp002631l, Google ScholarCrossref, ISI
  61. 61. M. T. Rodgers and P. B. Armentrout, Int. J. Mass Spectrom. 267, 167 (2007). https://doi.org/10.1016/j.ijms.2007.02.034, Google ScholarCrossref, ISI
  62. 62. C. J. Parkinson, P. M. Mayer, and L. Radom, J. Chem. Soc., Perkin Trans. 2 1999, 2305. https://doi.org/10.1039/a905476f, Google ScholarCrossref
  63. 63. A. S. Menon and L. Radom, J. Phys. Chem. A 112, 13225 (2008). https://doi.org/10.1021/jp803064k, Google ScholarCrossref, ISI
  64. 64. S. F. Boys and R. Bernardi, Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561, Google ScholarCrossref, ISI
  65. 65. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe, Chem. Rev. 94, 1873 (1994). https://doi.org/10.1021/cr00031a007, Google ScholarCrossref, ISI
  1. © 2017 Author(s). Published by AIP Publishing.