ABSTRACT
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N–N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the and character of the binding and lone pair electrons on the nitrogen atoms.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation, Grant Nos. CHE-1359769 and CHE-1664618, with partial support from ENSCO, Inc. We thank the Center of High Performance Computing at the University of Utah for the generous allocation of computer time and the Extreme Science and Engineering Discovery Environment (XSEDE), Grant No. TG-CHE170012, for allocations on the large shared-memory cluster at Pittsburgh Supercomputing Center at Carnegie Mellon University.
The authors declare no competing financial interest.
- 1. J. A. Gardner, R. A. Dressler, R. H. Salter et al., J. Phys. Chem. 96, 4210 (1992). https://doi.org/10.1021/j100190a021, Google ScholarCrossref, ISI
- 2. G. Lunn, E. B. Sansone, and L. K. Keefer, Environ. Sci. Technol. 17, 240 (1983). https://doi.org/10.1021/es00110a012, Google ScholarCrossref, ISI
- 3. G. V. Buxton and C. R. Stuart, J. Chem. Soc., Faraday Trans. 92, 1519 (1996). https://doi.org/10.1039/ft9969201519, Google ScholarCrossref
- 4. M. Zhang, R. Cheng, Z. Chen et al., Int. J. Hydrogen Energy 30, 1081 (2005). https://doi.org/10.1016/j.ijhydene.2004.09.014, Google ScholarCrossref, ISI
- 5. S. G. Pakdehi, M. Salimi, and M. Rasoolzadeh, Res. Appl. Mech. Eng. 3, 21 (2014), http://www.seipub.org/rame. Google Scholar
- 6. J.-P. Schirmann and P. Bourdauducq, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2000). Google Scholar
- 7. E. L. Øiestad and E. Uggerud, Int. J. Mass Spectrom. Ion Processes 165-166, 39 (1997). https://doi.org/10.1016/s0168-1176(97)00153-5, Google ScholarCrossref, ISI
- 8. R. Branko, E. P. Reinhardt, L. Gregor von et al., J. Phys.: Conf. Ser. 16, 561 (2005). https://doi.org/10.1088/1742-6596/16/1/078, Google ScholarCrossref
- 9. B. Ruscic, D. Feller, and K. A. Peterson, Theor. Chem. Acc. 133, 1415 (2013). https://doi.org/10.1007/s00214-013-1415-z, Google ScholarCrossref, ISI
- 10. B. Ruscic and D. H. Bross, ATcT.anl.gov, 2016. Google Scholar
- 11. D. Feller, D. H. Bross, and B. Ruscic, J. Phys. Chem. A 121, 6187 (2017). https://doi.org/10.1021/acs.jpca.7b06017, Google ScholarCrossref, ISI
- 12. S. J. Dunlavey, J. M. Dyke, N. Jonathan et al., Mol. Phys. 39, 1121 (1980). https://doi.org/10.1080/00268978000100931, Google ScholarCrossref, ISI
- 13. S. T. Gibson, J. P. Greene, and J. Berkowitz, J. Chem. Phys. 83, 4319 (1985). https://doi.org/10.1063/1.449045, Google ScholarScitation, ISI
- 14. E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998). https://doi.org/10.1063/1.556018, Google ScholarScitation, ISI
- 15. J. Biesner, L. Schnieder, G. Ahlers et al., J. Chem. Phys. 91, 2901 (1989). https://doi.org/10.1063/1.457644, Google ScholarScitation, ISI
- 16. S. Willitsch, J. M. Dyke, and F. Merkt, Mol. Phys. 102, 1543 (2004). https://doi.org/10.1080/00268970410001725855, Google ScholarCrossref, ISI
- 17. C. P. McNary and P. B. Armentrout, J. Chem. Phys. 145, 214311 (2016). https://doi.org/10.1063/1.4971238, Google ScholarScitation, ISI
- 18. C. P. McNary and P. B. Armentrout, J. Phys. Chem. A 120, 9690 (2016). https://doi.org/10.1021/acs.jpca.6b09318, Google ScholarCrossref, ISI
- 19. S. A. Shaffer, D. C. Prior, G. A. Anderson et al., Anal. Chem. 70, 4111 (1998). https://doi.org/10.1021/ac9802170, Google ScholarCrossref, ISI
- 20. S. A. Shaffer, A. Tolmachev, D. C. Prior et al., Anal. Chem. 71, 2957 (1999). https://doi.org/10.1021/ac990346w, Google ScholarCrossref, ISI
- 21. T. Kim, A. V. Tolmachev, R. Harkewicz et al., Anal. Chem. 72, 2247 (2000). https://doi.org/10.1021/ac991412x, Google ScholarCrossref, ISI
- 22. R. M. Moision and P. B. Armentrout, J. Am. Soc. Mass Spectrom. 18, 1124 (2007). https://doi.org/10.1016/j.jasms.2007.03.011, Google ScholarCrossref, ISI
- 23. D. R. Carl, R. M. Moision, and P. B. Armentrout, Int. J. Mass Spectrom. 265, 308 (2007). https://doi.org/10.1016/j.ijms.2007.03.008, Google ScholarCrossref, ISI
- 24. A. L. Heaton, S. J. Ye, and P. B. Armentrout, J. Phys. Chem. A 112, 3328 (2008). https://doi.org/10.1021/jp800439j, Google ScholarCrossref, ISI
- 25. A. L. Heaton, R. M. Moision, and P. B. Armentrout, J. Phys. Chem. A 112, 3319 (2008). https://doi.org/10.1021/jp711649g, Google ScholarCrossref, ISI
- 26. D. R. Carl, R. M. Moision, and P. B. Armentrout, J. Am. Soc. Mass Spectrom. 20, 2312 (2009). https://doi.org/10.1016/j.jasms.2009.08.024, Google ScholarCrossref, ISI
- 27. T. E. Cooper and P. B. Armentrout, Chem. Phys. Lett. 486, 1 (2010). https://doi.org/10.1016/j.cplett.2009.12.053, Google ScholarCrossref, ISI
- 28. D. R. Carl, B. K. Chatterjee, and P. B. Armentrout, J. Chem. Phys. 132, 044303 (2010). https://doi.org/10.1063/1.3292646, Google ScholarScitation, ISI
- 29. J. E. Carpenter, C. P. McNary, A. Furin et al., J. Am. Soc. Mass Spectrom. 28, 1876 (2017). https://doi.org/10.1007/s13361-017-1693-0, Google ScholarCrossref, ISI
- 30. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166 (1985). https://doi.org/10.1063/1.449799, Google ScholarScitation, ISI
- 31. E. Teloy and D. Gerlich, Chem. Phys. 4, 417 (1974). https://doi.org/10.1016/0301-0104(74)85008-1, Google ScholarCrossref, ISI
- 32. N. R. Daly, Rev. Sci. Instrum. 31, 264 (1960). https://doi.org/10.1063/1.1716953, Google ScholarScitation, ISI
- 33. F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001). https://doi.org/10.1063/1.1371958, Google ScholarScitation, ISI
- 34. D. A. Hales, L. Lian, and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes 102, 269 (1990). https://doi.org/10.1016/0168-1176(90)80065-b, Google ScholarCrossref, ISI
- 35. S. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973). https://doi.org/10.1063/1.1679522, Google ScholarScitation, ISI
- 36. T. Beyer and D. F. Swinehart, Commun. ACM 16, 379 (1973). https://doi.org/10.1145/362248.362275, Google ScholarCrossref, ISI
- 37. S. E. Stein and B. S. Rabinovitch, Chem. Phys. Lett. 49, 183 (1977). https://doi.org/10.1016/0009-2614(77)80471-5, Google ScholarCrossref, ISI
- 38. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, London, 1990). Google Scholar
- 39. D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996). https://doi.org/10.1021/jp953748q, Google ScholarCrossref, ISI
- 40. K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions, 2nd ed. (Wiley, New York, 1996). Google Scholar
- 41. M. T. Rodgers, K. M. Ervin, and P. B. Armentrout, J. Chem. Phys. 106, 4499 (1997). https://doi.org/10.1063/1.473494, Google ScholarScitation, ISI
- 42. M. T. Rodgers and P. B. Armentrout, J. Chem. Phys. 109, 1787 (1998). https://doi.org/10.1063/1.476754, Google ScholarScitation, ISI
- 43. P. B. Armentrout and J. Simons, J. Am. Chem. Soc. 114, 8627 (1992). https://doi.org/10.1021/ja00048a042, Google ScholarCrossref, ISI
- 44. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, USA, 2016. Google Scholar
- 45. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902, Google ScholarScitation, ISI
- 46. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913, Google ScholarScitation, ISI
- 47. M. K. Kesharwani, B. Brauer, and J. M. L. Martin, J. Phys. Chem. A 119, 1701 (2015). https://doi.org/10.1021/jp508422u, Google ScholarCrossref, ISI
- 48. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934). https://doi.org/10.1103/physrev.46.618, Google ScholarCrossref
- 49. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990). https://doi.org/10.1016/0009-2614(90)80029-d, Google ScholarCrossref, ISI
- 50. M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990). https://doi.org/10.1016/0009-2614(90)80030-h, Google ScholarCrossref, ISI
- 51. M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994). https://doi.org/10.1016/0009-2614(94)00116-2, Google ScholarCrossref, ISI
- 52. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988). https://doi.org/10.1016/0009-2614(88)85250-3, Google ScholarCrossref, ISI
- 53. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759, Google ScholarCrossref, ISI
- 54. J. Cizek, Advances in Chemical Physics (Wiley Interscience, New York, 1969), Vol. 14. Google Scholar
- 55. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982). https://doi.org/10.1063/1.443164, Google ScholarScitation, ISI
- 56. J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987). https://doi.org/10.1063/1.453520, Google ScholarScitation, ISI
- 57. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382 (1988). https://doi.org/10.1063/1.455269, Google ScholarScitation, ISI
- 58. G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys. 90, 3700 (1989). https://doi.org/10.1063/1.455827, Google ScholarScitation, ISI
- 59. C. Schwartz, Methods in Computational Physics (Academic Press, New York, 1963), Vol. 2. Google Scholar
- 60. D. Feller, D. A. Dixon, and J. B. Nicholas, J. Phys. Chem. A 104, 11414 (2000). https://doi.org/10.1021/jp002631l, Google ScholarCrossref, ISI
- 61. M. T. Rodgers and P. B. Armentrout, Int. J. Mass Spectrom. 267, 167 (2007). https://doi.org/10.1016/j.ijms.2007.02.034, Google ScholarCrossref, ISI
- 62. C. J. Parkinson, P. M. Mayer, and L. Radom, J. Chem. Soc., Perkin Trans. 2 1999, 2305. https://doi.org/10.1039/a905476f, Google ScholarCrossref
- 63. A. S. Menon and L. Radom, J. Phys. Chem. A 112, 13225 (2008). https://doi.org/10.1021/jp803064k, Google ScholarCrossref, ISI
- 64. S. F. Boys and R. Bernardi, Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561, Google ScholarCrossref, ISI
- 65. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe, Chem. Rev. 94, 1873 (1994). https://doi.org/10.1021/cr00031a007, Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.


