ABSTRACT
Computationally efficient modeling of the thermal conductivity of materials is crucial to thorough experimental planning and theoretical understanding of thermal properties. We present a modeling approach in this work that utilizes a frequency-dependent effective medium theory to calculate the lattice thermal conductivity of nanostructured solids. This method accurately predicts a significant reduction in the experimentally measured thermal conductivity of nanostructured Si80Ge20 systems reported in this work, along with previously reported thermal conductivities in nanowires and nanoparticles in matrix materials. We use our model to gain insights into the role of long wavelength phonons on the thermal conductivity of nanograined silicon-germanium alloys. Through thermal conductivity accumulation calculations with our modified effective medium model, we show that phonons with wavelengths much greater than the average grain size will not be impacted by grain boundary scattering, counter to the traditionally assumed notion that grain boundaries in solids will act as diffusive interfaces that will limit long wavelength phonon transport. This is further supported by using time-domain thermoreflectance at different pump modulation frequencies to measure the thermal conductivity of a series nanograined silicon-germanium alloys.
This material is based upon work supported by the Air Force Office of Scientific Research under Award No. FA9550-15-1-0079.
REFERENCES
- 1. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “ Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys,” Nano Lett. 8, 4670–4674 (2008). https://doi.org/10.1021/nl8026795, Google ScholarCrossref, ISI
- 2. J. Callaway, “ Model for lattice thermal conductivity at low temperatures,” Phys. Rev. 113, 1046–1051 (1959). https://doi.org/10.1103/PhysRev.113.1046, Google ScholarCrossref, ISI
- 3. W. Kim, S. L. Singer, A. Majumdar, J. M. O. Zide, D. Klenov, A. C. Gossard, and S. Stemmer, “ Reducing thermal conductivity of crystalline solids at high temperature using embedded nanostructures,” Nano Lett. 8, 2097–2099 (2008). https://doi.org/10.1021/nl080189t, Google ScholarCrossref
- 4. R. Yang and G. Chen, “ Thermal conductivity modeling of periodic two-dimensional nanocomposites,” Phys. Rev. B 69, 195316 (2004). https://doi.org/10.1103/PhysRevB.69.195316, Google ScholarCrossref
- 5. C. Dames and G. Chen, “ Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires,” J. Appl. Phys. 95, 682–693 (2004). https://doi.org/10.1063/1.1631734, Google ScholarScitation, ISI
- 6. R. Yang, G. Chen, M. Laroche, and Y. Taur, “ Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon boltzmann equation,” J. Heat Transfer 127, 298–306 (2005). https://doi.org/10.1115/1.1857941, Google ScholarCrossref
- 7. R. Yang, G. Chen, and M. Dresselhaus, “ Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction,” Phys. Rev. B 72, 125418 (2005). https://doi.org/10.1103/PhysRevB.72.125418, Google ScholarCrossref
- 8. Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, “ Thermal conductivity of nanocrystalline silicon: Importance of grain size and frequency-dependent mean free paths,” Nano Lett. 11, 2206–2213 (2011). https://doi.org/10.1021/nl1045395, Google ScholarCrossref
- 9. Q. Hao, G. Zhu, G. Joshi, X. Wang, A. Minnich, Z. Ren, and G. Chen, “ Theoretical studies on the thermoelectric figure of merit of nanograined bulk silicon,” Appl. Phys. Lett. 97, 063109 (2010). https://doi.org/10.1063/1.3478459, Google ScholarScitation
- 10. J. D. Chung, A. J. H. McGaughey, and M. Kaviany, “ Role of phonon dispersion in lattice thermal conductivity modeling,” J. Heat Transfer 126, 376–380 (2004). https://doi.org/10.1115/1.1723469, Google ScholarCrossref
- 11. P. E. Hopkins, L. M. Phinney, P. T. Rakich, R. H. Olsson, and I. El-Kady, “ Phonon considerations in the reduction of thermal conductivity in phononic crystals,” Appl. Phys. A 103, 575–579 (2011). https://doi.org/10.1007/s00339-010-6189-8, Google ScholarCrossref
- 12. P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. El-Kady, and L. M. Phinney, “ Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009). https://doi.org/10.1063/1.3250166, Google ScholarScitation
- 13. S. Volz and G. Chen, “ Molecular dynamics simulation of thermal conductivity of silicon nanowires,” Appl. Phys. Lett. 75, 2056–2058 (1999). https://doi.org/10.1063/1.124914, Google ScholarScitation, ISI
- 14. A. Giri, J. L. Braun, J. A. Tomko, and P. E. Hopkins, “ Reducing the thermal conductivity of chemically ordered binary alloys below the alloy limit via the alteration of phonon dispersion relations,” Appl. Phys. Lett. 110, 233112 (2017). https://doi.org/10.1063/1.4985204, Google ScholarScitation
- 15. A. Giri and P. E. Hopkins, “ Spectral contributions to the thermal conductivity of C60 and the fullerene derivative PCBM,” J. Phys. Chem. Lett. 8, 2153–2157 (2017). https://doi.org/10.1021/acs.jpclett.7b00609, Google ScholarCrossref
- 16. J. M. Larkin and A. J. H. McGaughey, “ Thermal conductivity accumulation in amorphous silica and amorphous silicon,” Phys. Rev. B 89, 144303 (2014). https://doi.org/10.1103/PhysRevB.89.144303, Google ScholarCrossref
- 17. A. S. Henry and G. Chen, “ Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics,” J. Comput. Theor. Nanoscience 5, 141–152 (2008). https://doi.org/10.1166/jctn.2008.2454, Google ScholarCrossref
- 18. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, “ Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2,” J. Appl. Phys. 84, 4891–4904 (1998). https://doi.org/10.1063/1.368733, Google ScholarScitation, ISI
- 19. K. Esfarjani, G. Chen, and H. T. Stokes, “ Heat transport in silicon from first-principles calculations,” Phys. Rev. B 84, 085204 (2011). https://doi.org/10.1103/PhysRevB.84.085204, Google ScholarCrossref
- 20. L. Lindsay, D. A. Broido, and T. L. Reinecke, “ First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?,” Phys. Rev. Lett. 111, 025901 (2013). https://doi.org/10.1103/PhysRevLett.111.025901, Google ScholarCrossref, ISI
- 21. A. Ward and D. A. Broido, “ Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge,” Phys. Rev. B 81, 085205 (2010). https://doi.org/10.1103/PhysRevB.81.085205, Google ScholarCrossref, ISI
- 22. A. Ward, D. A. Broido, D. Stewart, and G. Deinzer, “ Ab initio theory of the lattice thermal conductivity in diamond,” Phys. Rev. B 80, 125203 (2009). https://doi.org/10.1103/PhysRevB.80.125203, Google ScholarCrossref
- 23. A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, “ Prediction of Low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization,” Phys. Rev. Lett. 115, 205901 (2015). https://doi.org/10.1103/PhysRevLett.115.205901, Google ScholarCrossref
- 24. A. Minnich and G. Chen, “ Modified effective medium formulation for the thermal conductivity of nanocomposites,” Appl. Phys. Lett. 91, 073105 (2007). https://doi.org/10.1063/1.2771040, Google ScholarScitation, ISI
- 25. C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “ Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81, 6692–6699 (1997). https://doi.org/10.1063/1.365209, Google ScholarScitation, ISI
- 26. C.-W. Nan, “ Effective‐medium theory of piezoelectric composites,” J. Appl. Phys. 76, 1155–1163 (1994). https://doi.org/10.1063/1.357839, Google ScholarScitation
- 27. D. G. Cahill, “ Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum. 75, 5119–5122 (2004). https://doi.org/10.1063/1.1819431, Google ScholarScitation, ISI
- 28. A. J. Schmidt, “ Pump-probe thermoreflectance,” Annu. Rev. Heat Transfer 16, 159–181 (2013). https://doi.org/10.1615/AnnualRevHeatTransfer.v16.60, Google ScholarCrossref
- 29. W. Kim and A. Majumdar, “ Phonon scattering cross section of polydispersed spherical nanoparticles,” J. Appl. Phys. 99, 084306 (2006). https://doi.org/10.1063/1.2188251, Google ScholarScitation, ISI
- 30. S. J. Poon and K. Limtragool, “ Nanostructure model of thermal conductivity for high thermoelectric performance,” J. Appl. Phys. 110, 114306 (2011). https://doi.org/10.1063/1.3662947, Google ScholarScitation
- 31. S. J. Poon, A. S. Petersen, and D. Wu, “ Thermal conductivity of core-shell nanocomposites for enhancing thermoelectric performance,” Appl. Phys. Lett. 102, 173110 (2013). https://doi.org/10.1063/1.4804150, Google ScholarScitation
- 32. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “ Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934–2936 (2003). https://doi.org/10.1063/1.1616981, Google ScholarScitation, ISI
- 33. F. Yang and C. Dames, “ Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures,” Phys. Rev. B 87, 035437 (2013). https://doi.org/10.1103/PhysRevB.87.035437, Google ScholarCrossref
- 34. M.-S. Jeng, R. G. Yang, D. Song, and G. Chen, “ Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulations,” J. Heat Transfer 130, 042410 (2008). https://doi.org/10.1115/1.2818765, Google ScholarCrossref
- 35. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “ New directions for low-dimensional thermoelectric materials,” Adv. Mater. 19, 1043–1053 (2007). https://doi.org/10.1002/adma.200600527, Google ScholarCrossref, ISI
- 36. J. Ordonez-Miranda, M. Hermens, I. Nikitin, V. G. Kouznetsova, and S. Volz, “ Modeling of the effective thermal conductivity of sintered porous pastes,” in 20th International Workshop on Thermal Investigations of ICs Systems Terminic (2014), pp. 1–4. Google ScholarCrossref
- 37. R. B. Wilson and D. G. Cahill, “ Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments,” Nat. Commun. 5, 5075 (2014). https://doi.org/10.1038/ncomms6075, Google ScholarCrossref, ISI
- 38. J. L. Braun and P. E. Hopkins, “ Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study,” J. Appl. Phys. 121, 175107 (2017). https://doi.org/10.1063/1.4982915, Google ScholarScitation, ISI
- 39. P. E. Hopkins, J. R. Serrano, L. M. Phinney, S. P. Kearney, T. W. Grasser, and C. T. Harris, “ Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating,” J. Heat Transfer 132, 081302 (2010). https://doi.org/10.1115/1.4000993, Google ScholarCrossref, ISI
- 40. K. T. Regner, L. C. Wei, and J. A. Malen, “ Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition,” J. Appl. Phys. 118, 235101 (2015). https://doi.org/10.1063/1.4937995, Google ScholarScitation, ISI
- 41. K. T. Regner, J. P. Freedman, and J. A. Malen, “ Advances in studying phonon mean free path dependent contributions to thermal conductivity,” Nanoscale Microscale Thermophys. Eng. 19, 183–205 (2015). https://doi.org/10.1080/15567265.2015.1045640, Google ScholarCrossref
- 42. K. T. Regner, A. J. H. McGaughey, and J. A. Malen, “ Analytical interpretation of nondiffusive phonon transport in thermoreflectance thermal conductivity measurements,” Phys. Rev. B 90, 064302 (2014). https://doi.org/10.1103/PhysRevB.90.064302, Google ScholarCrossref
- 43. K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, “ Broadband phonon mean freee path contributions to thermal conductivity measured using frequency domain thermoreflectance,” Nat. Commun. 4, 1640 (2013). https://doi.org/10.1038/ncomms2630, Google ScholarCrossref
- 44. A. T. Ramu and J. E. Bowers, “ A compact heat transfer model based on an enhanced Fourier law for analysis of frequency-domain thermoreflectance experiments,” Appl. Phys. Lett. 106, 263102 (2015). https://doi.org/10.1063/1.4923310, Google ScholarScitation
- 45. Y. K. Koh and D. G. Cahill, “ Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007). https://doi.org/10.1103/PhysRevB.76.075207, Google ScholarCrossref
- 46. Y. K. Koh, D. G. Cahill, and B. Sun, “ Nonlocal theory for heat transport at high frequencies,” Phys. Rev. B 90, 205412 (2014). https://doi.org/10.1103/PhysRevB.90.205412, Google ScholarCrossref
- 47. R. Cheaito, J. C. Duda, T. E. Beechem, K. Hattar, J. F. Ihlefeld, D. L. Medlin, M. A. Rodriguez, M. J. Campion, E. S. Piekos, and P. E. Hopkins, “ Experimental Investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films,” Phys. Rev. Lett. 109, 195901 (2012). https://doi.org/10.1103/PhysRevLett.109.195901, Google ScholarCrossref
- 48. B. Abeles, “ Lattice thermal conductivity of disordered semiconductor alloys at high temperatures,” Phys. Rev. 131, 1906–1911 (1963). https://doi.org/10.1103/PhysRev.131.1906, Google ScholarCrossref, ISI
- 49. P. G. Klemens, “ The scattering of low-frequency lattice waves by static imperfections,” Proc. Phys. Soc., London, Sect. A 68, 1113–1128 (1955). https://doi.org/10.1088/0370-1298/68/12/303, Google ScholarCrossref
- 50. P. E. Hopkins, “ Dispersion considerations affecting phonon-mass impurity scattering rates,” AIP Adv. 1, 041705 (2011). https://doi.org/10.1063/1.3676171, Google ScholarScitation
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.