ABSTRACT
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 1033 ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
- 1. R. Lionello, J. A. Linker, and Z. Mikić, ApJ 690, 902–912 (2009). https://doi.org/10.1088/0004-637X/690/1/902, Google ScholarCrossref
- 2. V. S. Titov, T. Török, Z. Mikić, and J. A. Linker, ApJ 790, 163 (2014). https://doi.org/10.1088/0004-637X/790/2/163, Google ScholarCrossref
- 3. V. S. Titov, and P. Démoulin, A&A 351, 707–720 (1999). Google Scholar
- 4. I. I. Roussev, T. G. Forbes, T. I. Gombosi, I. V. Sokolov, D. L. DeZeeuw, and J. Birn, ApJ 588, L45–L48 (2003). https://doi.org/10.1086/375442, Google ScholarCrossref
- 5. T. Török, and B. Kliem, ApJ 630, L97–L100 (2005). https://doi.org/10.1086/462412, Google ScholarCrossref
- 6. C. J. Schrijver, C. Elmore, B. Kliem, T. Török, and A. M. Title, Ap. J. 674, 586–595 (2008). https://doi.org/10.1086/524294, Google ScholarCrossref
- 7. N. Lugaz, C. Downs, K. Shibata, I. I. Roussev, A. Asai, and T. I. Gombosi, ApJ 738, 127 (2011). https://doi.org/10.1088/0004-637X/738/2/127, Google ScholarCrossref
- 8. B. Kliem, and T. Török, Phys. Rev. Lett. 96, 255002 (2006). https://doi.org/10.1103/PhysRevLett.96.255002, Google ScholarCrossref
- 9. Z. Mikić, and J. A. Linker, ApJ 430, 898–912 (1994). https://doi.org/10.1086/174460, Google ScholarCrossref
- 10. R. Lionello, C. Downs, J. A. Linker, T. Török, P. Riley, and Z. Mikić, ApJ 777, 76 (2013). https://doi.org/10.1088/0004-637X/777/1/76, Google ScholarCrossref
- 11. Z. Mikić, R. Lionello, Y. Mok, J. A. Linker, and A. R. Winebarger, ApJ 773, 94 (2013). https://doi.org/10.1088/0004-637X/773/2/94, Google ScholarCrossref
- 12. J. A. Linker, Z. Mikić, R. Lionello, P. Riley, T. Amari, and D. Odstrcil, Phys. of Plasmas 10, 1971–1978 (2003). https://doi.org/10.1063/1.1563668, Google ScholarScitation
- 13. J. J. Aly, ApJ 375, L61–L64 (1991). https://doi.org/10.1086/186088, Google ScholarCrossref
- 14. P. A. Sturrock, ApJ 380, 655–659 (1991). https://doi.org/10.1086/170620, Google ScholarCrossref
- 15. C. W. Smith et al., Sol. Phys. 204, 227–252 (2001). https://doi.org/10.1023/A:1014265108171, Google ScholarCrossref
- 16. V. B. Yurchyshyn, H. Wang, P. R. Goode, and Y. Deng, ApJ 563, 381–388 (2001). https://doi.org/10.1086/323778, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.