Full Published Online: 25 June 2015
AIP Conference Proceedings 1667, 020013 (2015); https://doi.org/10.1063/1.4922569
more...View Affiliations
View Contributors
  • V. Morandi
  • M. Del Marro
  • P. Maccagnani
  • L. Masini
  • A. Migliori
  • L. Ortolani
  • G. Pallocca
  • A. Pezza
  • M. Rossi
  • G. Sberveglieri
  • M. Vittori-Antisari
  • P. Vinciguerra
  • M. Ferroni
The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as required by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.
  1. 1. P.A. Midgley, M. Weyland, T.J. Yates,I. Arslan, R.E. Dunin-Borkowski, J.M Thomas, Journal of Microscopy 223, 185 (2006) https://doi.org/10.1111/j.1365-2818.2006.01616.x, Google ScholarCrossref, CAS
  2. 2. S. Bals, G. Van Tendeloo, C. Kisielowski, Advanced Materials 18, 892 (2006) https://doi.org/10.1002/adma.200502201, Google ScholarCrossref, CAS
  3. 3. M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, P. Munroe, MRS Bullettin 32, 408 (2007) https://doi.org/10.1557/mrs2007.64, Google ScholarCrossref, CAS
  4. 4. A.C. Kak and M. Slaney in Principles of Computerized Tomographic Imaging, IEEE Press (1998), pp. 49–56. Google Scholar
  5. 5. J. Mahamid and W. Baumeister, Microscopy and Analysis, September Issue (2012) pp. 45–48. Google Scholar
  6. 6. G. Mobus and B.J. Inkson, Materials Today 10, 18 (2007). https://doi.org/10.1016/S1369-7021(07)70304-8, Google ScholarCrossref, CAS
  7. 7. P.G. Merli, A. Migliori, V. Morandi, R. Rosa, Ultramicroscopy 88, 139 (2001). https://doi.org/10.1016/S0304-3991(00)00132-7, Google ScholarCrossref, CAS
  8. 8. V. Morandi, P.G. Merli, D. Quaglino, Applied Physics Letters 90, 163113 (2007). https://doi.org/10.1063/1.2724917, Google ScholarScitation
  9. 9. V. Morandi and P.G. Merli, Journal of Applied Physics 101, 114917 (2007). https://doi.org/10.1063/1.2745333, Google ScholarScitation
  10. 10. http://rsbweb.nih.gov/ij/ - ImageJ: Image Processing and Analysis in Java, Google Scholar
  11. 11. C. Messaoudii, T. Boudier, C.O. Sanchez Sorzano, S. Marco, BMC Bioinformatics 8, 288 (2007). https://doi.org/10.1186/1471-2105-8-288, Google ScholarCrossref
  12. 12. N. Crivillers, L. Favaretto, A. Zanelli, I. Manet, M. Treier, V. Morandi, M. Gazzano, P. Samorì, M. Melucci, ChemmComm 48, 12162 (2012). Google ScholarCAS
  13. 13. J. Frank, Electron Tomography. Springer Science & Business Media, 2008. Google Scholar
  1. © 2015 AIP Publishing LLC.