No Access Submitted: 12 February 1999 Accepted: 15 July 1999 Published Online: 29 September 1999
J. Chem. Phys. 111, 6573 (1999); https://doi.org/10.1063/1.479948
more...View Affiliations
  • Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
View Contributors
  • Chandra N. Patra
The structure of binary hard-sphere mixtures near a hard wall is studied using a density functional theory. The formalism is based on a simple weighted density approach for the one-particle correlation functions of the nonuniform system, and requires as input only the one- and two-particle direct correlation functions of the corresponding uniform system. The approach is designed in a way, where the weight function is decoupled from the weighted density. Numerical results on the density profiles are shown to compare well with available simulation data.
  1. 1. Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Dekker, New York, 1992). Google Scholar
  2. 2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987). Google Scholar
  3. 3. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986). Google Scholar
  4. 4. C. N. Patraand S. K. Ghosh, J. Chem. Phys. 102, 2556 (1995). Google ScholarScitation
  5. 5. P. Hohenbergand W. Kohn, Phys. Rev. B 136, 864 (1964). Google ScholarCrossref
  6. 6. N. D. Mermin, Phys. Rev. A 137, 1441 (1965). Google ScholarCrossref
  7. 7. T. V. Ramakrishnanand M. Yussouff, Phys. Rev. B 19, 2775 (1979). Google ScholarCrossref
  8. 8. R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Dekker, New York, 1992). Google Scholar
  9. 9. P. Tarazona, Phys. Rev. A 31, 2672 (1985). Google ScholarCrossref
  10. 10. A. R. Dentonand N. W. Ashcroft, Phys. Rev. A 39, 426 (1989). Google ScholarCrossref
  11. 11. L. Mier-y-Teran, S. H. Suh, H. S. White, and H. T. Davis, J. Chem. Phys. 92, 5087 (1990). Google ScholarScitation
  12. 12. C. N. Patraand S. K. Ghosh, Phys. Rev. E 47, 4088 (1993). Google ScholarCrossref
  13. 13. Z. Tang, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 96, 4639 (1992). Google ScholarScitation
  14. 14. C. N. Patraand S. K. Ghosh, J. Chem. Phys. 106, 2752 (1997). Google ScholarScitation
  15. 15. A. Yethiraj, J. Chem. Phys. 109, 3269 (1998). Google ScholarScitation
  16. 16. D. W. Marrand A. P. Gast, Phys. Rev. E 47, 1212 (1993). Google ScholarCrossref
  17. 17. E. Kierlikand M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990). Google ScholarCrossref
  18. 18. B. Götzelmann, A. Haase, and S. Dietrich, Phys. Rev. E 53, 3456 (1996). Google ScholarCrossref
  19. 19. A. R. Dentonand N. W. Ashcroft, Phys. Rev. A 39, 4701 (1989). Google ScholarCrossref
  20. 20. R. Leidland H. Wagner, J. Chem. Phys. 98, 4142 (1993). Google ScholarScitation
  21. 21. S. C. Kimand S. H. Suh, J. Chem. Phys. 104, 7233 (1996). Google ScholarScitation
  22. 22. S. C. Lee, Z. H. Yoon, and S. C. Kim, Can. J. Phys. 73, 432 (1995). Google ScholarCrossref
  23. 23. S. Zhou, J. Chem. Phys. 110, 2140 (1999). Google ScholarScitation
  24. 24. Z. Tan, U. M. B. Marconi, F. van Swol, and K. E. Gubbins, J. Chem. Phys. 90, 3704 (1989). Google ScholarScitation
  25. 25. A. R. Dentonand N. W. Ashcroft, Phys. Rev. A 44, 8242 (1991). Google ScholarCrossref
  26. 26. C. N. Patraand S. K. Ghosh, J. Chem. Phys. 106, 2762 (1997). Google ScholarScitation
  27. 27. M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963). Google ScholarCrossref
  28. 28. E. Thiele, J. Chem. Phys. 39, 474 (1963). Google ScholarScitation
  29. 29. J. L. Lebowitz, Phys. Rev. A 133, 895 (1964). Google ScholarCrossref
  30. 30. N. W. Ashcroftand D. C. Langreth, Phys. Rev. 156, 685 (1967). Google ScholarCrossref
  31. 31. I. K. Snookand D. Henderson, J. Chem. Phys. 68, 2134 (1978). Google ScholarScitation
  32. 32. F. van Swoland J. R. Henderson, Phys. Rev. A 43, 2932 (1991). Google ScholarCrossref
  1. © 1999 American Institute of Physics.