No Access Submitted: 23 February 2011 Accepted: 11 June 2011 Published Online: 29 July 2011
Journal of Applied Physics 110, 024701 (2011); https://doi.org/10.1063/1.3610446
more...View Affiliations
View Contributors
  • Gopa Mandal
  • Sudeshna Bhattacharya
  • Tapan Ganguly
The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV–vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH∼7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.
G.M. thanks to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing her the NET-CSIR fellowship. The authors also thank Mr Subrata Das of the department of Spectroscopy for his active help during fluorescence lifetime measurements. We express our heartiest thanks to Prof. Prasanta Kumar Das of department of Biological Chemistry, IACS, for helping us to measuring the CD and FT-IR spectra. TG specially thanks Department of Science and Technology (DST), New Delhi, India for Nano-Mission project (No.:SR/NM/NS-51/2010) for supporting the various research work conducted in his photophysics group.
  1. 1. W. Shang, J. H. Nuffer, V. A. Muniz-Papandrea, W. Colon, R. W. Siegel, and J. S. Dordick, Small 5, 470 (2009). https://doi.org/10.1002/smll.200800995 , Google ScholarCrossref
  2. 2. J. Zhou, N. S. Xu, and Z. L. Wang, Adv. Mater. 18, 2432 (2006). https://doi.org/10.1002/adma.v18:18 , Google ScholarCrossref
  3. 3. A. Umar, M. M. Rahman, M. Vaseem, and Y.-B. Hahn, Electrochem. Commun. 11, 118 (2009). https://doi.org/10.1016/j.elecom.2008.10.046 , Google ScholarCrossref
  4. 4. Z. L. Wang and J. H. Song, Science 312, 242 (2006); https://doi.org/10.1126/science.1124005 , Google ScholarCrossref
    X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007). https://doi.org/10.1126/science.1139366 , , Google ScholarCrossref
  5. 5. R. Khan, A. Kaushik, P. R. Solanki, A. A. Ansari, M. K. Pandey, and B. D. Malhotra, Anal. Chim. Acta 616, 207 (2008). https://doi.org/10.1016/j.aca.2008.04.010 , Google ScholarCrossref
  6. 6. M. Brunori, Biophys. Chem. 86, 221(2000). https://doi.org/10.1016/S0301-4622(00)00142-3 , Google ScholarCrossref
  7. 7. L. Stryer, in Biochemistry, 4th ed. (W.H. Freeman and Co., New York, 1995), pp. 147–178. Google Scholar
  8. 8. D.-M. Sun, C.-X. Cai, X.-G. Li, W. Xing, and T.-H. Lu, J. Electroanal. Chem. 566, 415 (2004). https://doi.org/10.1016/j.jelechem.2003.11.055 , Google ScholarCrossref
  9. 9. B. Tang, Y. Wang, H. Liang, Z. Chen, X. He, and H. Shen, Spectrochim. Acta Part A 63, 609 (2006). https://doi.org/10.1016/j.saa.2005.06.008 , Google ScholarCrossref
  10. 10. K. G. Welinder, Eur. J. Biochem. 96, 483 (1979); https://doi.org/10.1111/j.1432-1033.1979.tb13061.x , Google ScholarCrossref
    Z. Chen, J. S. de Ropp, G. Hernandez, and G. N. La Mar, J. Am. Chem. Soc. 116, 8772 (1994). https://doi.org/10.1021/ja00098a040 , , Google ScholarCrossref
  11. 11. D. Job and H. B. Dunford, Eur. J. Biochem. 66, 607 (1976); https://doi.org/10.1111/j.1432-1033.1976.tb10588.x , Google ScholarCrossref
    W. Sun, X. Ji, L. J. Kricka, and H. B. Dunford, Can. J. Chem. 72, 2159 (1994); https://doi.org/10.1139/v94-274 , , Google ScholarCrossref
    P. P. Kelder, N. J. de Mol, M. J. E. Fischer, and L. H. M. Janssen, Biochim. Biophys. Acta 1205, 230 (1994); https://doi.org/10.1016/0167-4838(94)90238-0 , , Google ScholarCrossref
    L P. Candeias, L K. Folkes, M. Porssa, J. Parrick, and P. Wardman, Biochemistry 35,102 (1996). https://doi.org/10.1021/bi9514424 , , Google ScholarCrossref
  12. 12. N. C. Veitch, Phytochemistry 65, 249 (2004). https://doi.org/10.1016/j.phytochem.2003.10.022 , Google ScholarCrossref
  13. 13. Y. Lee and K. B. Song, J. Biochem. Mol. Biol. 35, 590 (2002). https://doi.org/10.5483/BMBRep.2002.35.6.590 , Google ScholarCrossref
  14. 14. A. B. Anderson and C. R. Robertson, Biophys. J. 68, 2091 (1995). https://doi.org/10.1016/S0006-3495(95)80388-7 , Google ScholarCrossref
  15. 15. I. Lozzi, L. Calamai, P. Fusi, M. Bosetto, and G. Stotzky, Soil Biol. Biochem. 33, 1021 (2001). https://doi.org/10.1016/S0038-0717(01)00005-0 , Google ScholarCrossref
  16. 16. A. Sulkowska J. Mol. Struct. 614, 227 (2002). https://doi.org/10.1016/S0022-2860(02)00256-9 , Google ScholarCrossref
  17. 17. A. G. Szabo, D. Kpajcarski, M. Zuker, and B. Alpert, Chem. Phys. Lett. 108, 145 (1984). https://doi.org/10.1016/0009-2614(84)85709-7 , Google ScholarCrossref
  18. 18. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, 1999), Chap. 9, p. 267. Google ScholarCrossref
  19. 19. Z. Gryczynski, J. Lubkowski, and E. Bucci, J. Biol. Chem. 270, 19232 (1995). https://doi.org/10.1074/jbc.270.33.19232 , Google ScholarCrossref
  20. 20. D. R. James, Y.-S. Liu, P. De Mayo, and W. R. Ware, Chem. Phys. Lett. 120, 460 (1985). https://doi.org/10.1016/0009-2614(85)85641-4 , Google ScholarCrossref
  21. 21. N. Zhou, Y. Z. Liang, and P. Wang, J. Photochem. Photobiol. A 185, 271(2007). https://doi.org/10.1016/j.jphotochem.2006.06.019 , Google ScholarCrossref
  22. 22. X.-Z. Feng, Z. Lin, L.-J. Yang, C. Wang, and C.-L. Bai, Talanta 47, 1223 (1998). https://doi.org/10.1016/S0039-9140(98)00198-2 , Google ScholarCrossref
  23. 23. F. Wang, J. Yang, X. Wu, X. Wang, L. Feng, Z. Jia, and C. Guo, J. Colloid Interf. Sci. 298, 757 (2006). https://doi.org/10.1016/j.jcis.2006.01.028 , Google ScholarCrossref
  24. 24. S. Bi, L. Ding, Y. Tian, D. Song, X. Zhou, X. Liu, and H. Zhang, J. Mol. Struct. 703, 37 (2004). https://doi.org/10.1016/j.molstruc.2004.05.026 , Google ScholarCrossref
  25. 25. G. Mandal, S. Bhattacharya, and T. Ganguly, Chem. Phys. Lett. 472, 128 (2009). https://doi.org/10.1016/j.cplett.2009.03.007 , Google ScholarCrossref
  26. 26. J. B. Xiao, X. Q. Chen, X. Y. Jiang, M. Hilczer, and M. Tachiya, J. Fluoresc. 18, 671 (2008). https://doi.org/10.1007/s10895-008-0346-x , Google ScholarCrossref
  27. 27. Q. Xu, B. Han, and H. Yan, J. Phys. Chem. A 103, 5240 (1999). https://doi.org/10.1021/jp9900739 , Google ScholarCrossref
  28. 28. M. De, C.-C. You, S. Srivastava, and V. M. Rotello, J. Am. Chem. Soc. 129, 10747 (2007). https://doi.org/10.1021/ja071642q , Google ScholarCrossref
  29. 29. J. B. Xiao, J. Shi, H. Cao, S. D. Wu, F. L. Ren, and M. Xu, J. Pharm. Biomed. Anal. 45, 609 (2007). https://doi.org/10.1016/j.jpba.2007.08.032 , Google ScholarCrossref
  30. 30. J. K. Koening and D. L. Tabb, in Analytical Applications of FT-IR to Molecular and Biological Systems, edited by J. R. During (Reidel, Boston, MA, 1980), p. 241. Google ScholarCrossref
  31. 31. J. K. Kauppinen, D. J. Moffat, H. H. Mantsch, and D. G. Cameron, Appl. Spectrosc. 35, 271 (1981). https://doi.org/10.1366/0003702814732634 , Google ScholarCrossref
  32. 32. J. F. Rusling and T. F. Kumosinski, Intell. Instrum. Comput. 10, 139 (1992). Google Scholar
  33. 33. Z. H. Chi and S. A. Asher, Biochemistry 37, 2865 (1998). https://doi.org/10.1021/bi971161r , Google ScholarCrossref
  34. 34. H. Al-Ekabl and N. Serpone, J. Phys. Chem. 92, 5726 (1988). https://doi.org/10.1021/j100331a036 , Google ScholarCrossref
  35. 35. T. K. Das and S. Mazumdar, Eur. J. Biochem. 227, 823 (1995). https://doi.org/10.1111/j.1432-1033.1995.tb20207.x , Google ScholarCrossref
  36. 36. Y. J. Hu, Y. Liu, Z. B. Pi, and S. S. Qu, Bioorg. Med. Chem. 13, 6609 (2005). https://doi.org/10.1016/j.bmc.2005.07.039 , Google ScholarCrossref
  37. 37. T. Yuan, A. M. Weljie, and H. J. Vogel, Biochemistry 37, 3187(1998). https://doi.org/10.1021/bi9716579 , Google ScholarCrossref
  38. 38. R. W. Congdon, G. W. Muth, and A. G. Splittgerber, Anal. Biochem. 213, 407 (1993). https://doi.org/10.1006/abio.1993.1439 , Google ScholarCrossref
  39. 39. J. H. Hafner, C -L. Cheung, A. T. Woolley, and C. M. Lieber, Prog. Biophys. Mol. Biol. 77, 73 (2001). https://doi.org/10.1016/S0079-6107(01)00011-6 , Google ScholarCrossref
  40. 40. C. McAllister, M. A. Karymov, Y. Kawano, A. Y. Lushnikov, A. Mikheikin, V. N. Uversky, and Y. L. Lyubchenko, J. Mol. Biol. 354, 1028 (2005). https://doi.org/10.1016/j.jmb.2005.10.012 , Google ScholarCrossref
  41. 41. K. V. Singh, R. R. Pandey, X. Wang, R. Lake, C. S. Ozkan, K. Wang, and M. Ozkan, Carbon 44, 1730 (2006). https://doi.org/10.1016/j.carbon.2005.12.048 , Google ScholarCrossref
  42. 42. M. Sano, A. Kamino, and S. Shinkai, Angew. Chem. Int. Ed. 40, 4661 (2001). https://doi.org/10.1002/1521-3773(20011217)40:24<>1.0.CO;2-C , Google ScholarCrossref
  43. 43. O. I. Kiselyova, O. L. Guryev, A. V. Krivosheev, S. A. Usanov, and I. V. Yaminsky, Langmuir 15, 1353 (1999). https://doi.org/10.1021/la980726x , Google ScholarCrossref
  44. 44. M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992). https://doi.org/10.1126/science.1411505 , Google ScholarCrossref
  45. 45. S. Boussaad and N. J. Tao, J. Am. Chem. Soc. 121, 4510 (1999). https://doi.org/10.1021/ja990117r , Google ScholarCrossref
  46. 46. R. Li, Y. Nagai, and M. Nagai, J. Inorg. Biochem. 82, 93 (2000). https://doi.org/10.1016/S0162-0134(00)00151-3 , Google ScholarCrossref
  47. 47. L. Shang, Y. Wang, J. Jiang, and S. Dong, Langmuir 23, 2714 (2007). https://doi.org/10.1021/la062064e , Google ScholarCrossref
  48. 48. Z. X. Lu, T. Cui, and Q. L. Shi, Applications of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology, 1st ed. (Science Press, 1987), pp. 79–82. Google Scholar
  49. 49. D. Sears and S. Wand Beychock, in Physical Principles and Techniques of Protein Chemistry, edited by S. J. Leach (Academic Press, New York/London, 1973), Part C, pp. 445–593. Google ScholarCrossref
  50. 50. J. Tang, J. Jiang, Y. Song, Z. Peng, Z. Wu, S. Dong, and E. Wang, Chem. Phys. Lipids 120, 119 (2002). https://doi.org/10.1016/S0009-3084(02)00109-3 , Google ScholarCrossref
  51. 51. Y. P. Myer, J. Biol. Chem. 243, 2115 (1968). Google Scholar
  52. 52. C. T. Chang, C.-S. C. Wu, and J. T. Yang, Anal. Biochem. 91, 13 (1978). https://doi.org/10.1016/0003-2697(78)90812-6 , Google ScholarCrossref
  53. 53. Y.-H. Chen, J. T. Yang, and H. M. Martinez, Biochemistry 22, 4120 (1972). https://doi.org/10.1021/bi00772a015 , Google ScholarCrossref
  54. 54. S. W. Provencher and J. Glockner, Biochemistry 20, 33 (1981). https://doi.org/10.1021/bi00504a006 , Google ScholarCrossref
  55. 55. See supplementary material at http://dx.doi.org/10.1063/1.3610446 for tables and figures of some results. Google Scholar
  1. © 2011 American Institute of Physics.