ABSTRACT
Motivated by the protein structure prediction problem, we develop two variants of the Hamiltonian replica exchange methods (REMs) for efficient configuration sampling, (1) the scaled hydrophobicity REM and (2) the phantom chain REM, and compare their performance with the ordinary REM. We first point out that the ordinary REM has a shortage for the application to large systems such as biomolecules and that the Hamiltonian REM, an alternative formulation of the REM, can give a remedy for it. We then propose two examples of the Hamiltonian REM that are suitable for a coarse-grained protein model. (1) The scaled hydrophobicity REM prepares replicas that are characterized by various strengths of hydrophobic interaction. The strongest interaction that mimics aqueous solution environment makes proteins folding, while weakened hydrophobicity unfolds proteins as in organic solvent. Exchange between these environments enables proteins to escape from misfolded traps and accelerate conformational search. This resembles the roles of molecular chaperone that assist proteins to fold in vivo. (2) The phantom chain REM uses replicas that allow various degrees of atomic overlaps. By allowing atomic overlap in some of replicas, the peptide chain can cross over itself, which can accelerate conformation sampling. Using a coarse-gained model we developed, we compute equilibrium probability distributions for poly-alanine 16-mer and for a small protein by these REMs and compare the accuracy of the results. We see that the scaled hydrophobicity REM is the most efficient method among the three REMs studied.
- 1. J. Moult, Curr. Opin. Biotechnol. 10, 583 (1999). Google ScholarCrossref
- 2. R. Bonneauand D. Baker, Annu. Rev. Biophys. Biomol. Struct. 30, 173 (2001). Google ScholarCrossref
- 3. D. Bakerand A. Sali, Science 294, 93 (2001). Google ScholarCrossref
- 4. K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, J. Mol. Biol. 268, 209 (1997). Google ScholarCrossref
- 5. K. T. Simons, I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff, and D. Baker, Proteins 34, 82 (1999). Google ScholarCrossref
- 6. K. T. Simons, C. Strauss, and D. Baker, J. Mol. Biol. 306, 1191 (2001). Google ScholarCrossref, ISI
- 7. C. B. Anfinsen, Science 181, 223 (1973). Google ScholarCrossref, ISI
- 8. T. Lazaridisand M. Karplus, Proteins 35, 133 (1999). Google ScholarCrossref, ISI
- 9. A. R. Kinjo, A. Kidera, H. Nakamura, and K. Nishikawa, Eur. Biophys. J. 30, 1 (2001). Google ScholarCrossref
- 10. I. Ohmineand S. Saito, Acc. Chem. Res. 32, 741 (1999). Google ScholarCrossref
- 11. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987). Google Scholar
- 12. B. A. Bergand T. Neuhaus, Phys. Lett. B 267, 246 (1991). Google ScholarCrossref
- 13. A. Mitsutakeand Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001). Google ScholarCrossref, ISI
- 14. A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992). Google ScholarScitation, ISI
- 15. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992). Google ScholarCrossref
- 16. K. Hukushimaand K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). Google ScholarCrossref
- 17. Y. Sugitaand Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999). Google ScholarCrossref, ISI
- 18. K. Hukushima, Phys. Rev. E 60, 3606 (1999). Google ScholarCrossref
- 19. D. Gront, A. Kolinski, and J. Skolnick, J. Chem. Phys. 113, 5065 (2000). Google ScholarScitation, ISI
- 20. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000). Google ScholarScitation, ISI
- 21. Y. Sugitaand Y. Okamoto, Chem. Phys. Lett. 329, 261 (2000). Google ScholarCrossref
- 22. A. Mitutakeand Y. Okamoto, Chem. Phys. Lett. 332, 131 (2000). Google ScholarCrossref
- 23. R. Yamamotoand W. Kob, Phys. Rev. E 61, 5473 (2000). Google ScholarCrossref
- 24. Y. Zhangand J. Skolnick, J. Chem. Phys. 115, 5027 (2001). Google ScholarScitation
- 25. Y. Ishikawa, Y. Sugita, T. Nishikawa, and Y. Okamoto, Chem. Phys. Lett. 333, 199 (2001). Google ScholarCrossref
- 26. T. Okabe, M. Kawata, Y. Okamoto, and M. Mikami, Chem. Phys. Lett. 335, 435 (2001). Google ScholarCrossref
- 27. K. Y. Sanbonmatsuand A. E. Garcia, Proteins 46, 225 (2002). Google ScholarCrossref
- 28. M. C. Tesi, E. J. J. van Rensburg, E. Orlandini, and S. G. Whittington, J. Stat. Phys. 82, 155 (1996). Google ScholarCrossref, ISI
- 29. U. H. E. Hansmann, Chem. Phys. Lett. 281, 140 (1997). Google ScholarCrossref, ISI
- 30. Q. Yanand J. J. de Pablo, J. Chem. Phys. 111, 9509 (1999). Google ScholarScitation, ISI
- 31. A. M. Ferrenbergand R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988). Google ScholarCrossref, ISI
- 32. A. M. Ferrenbergand R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989). Google ScholarCrossref, ISI
- 33. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992). Google ScholarCrossref, ISI
- 34. S. Takada, Z. A. Luthey-Schulten, and P. G. Wolynes, J. Chem. Phys. 110, 11616 (1999). Google ScholarScitation
- 35. S. Takada, Proteins 42, 85 (2001). Google ScholarCrossref
- 36. Z. Xu, A. L. Horwich, and P. B. Sigler, Nature (London) 388, 741 (1997). Google ScholarCrossref
- 37. M. J. Todd, P. V. Viitanen, and G. H. Lorimer, Science 265, 659 (1994). Google ScholarCrossref
- 38. W. Braunand N. Go, J. Mol. Biol. 186, 611 (1985). Google ScholarCrossref
- 39. Y. Iba, G. Chikenji, and M. Kikuchi, J. Phys. Soc. Jpn. 67, 3327 (1998). Google ScholarCrossref
- 40. G. Chikenji, M. Kikuchi, and Y. Iba, Phys. Rev. Lett. 83, 1886 (1999). Google ScholarCrossref
- 41. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979). Google Scholar
- 42. M. U. Johansson, M. D. Chathau, M. Wikstrom, S. Forsen, T. Drakenberg, and L. Bjorck, J. Mol. Biol. 266, 859 (1997). Google ScholarCrossref
- 43. A. Irback, F. Sjunnesson, and S. Wallin, Proc. Natl. Acad. Sci. U.S.A. 97, 13614 (2000). Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

