No Access Submitted: 12 December 2001 Accepted: 04 March 2002 Published Online: 06 May 2002
J. Chem. Phys. 116, 9058 (2002); https://doi.org/10.1063/1.1472510
more...View Contributors
  • Hiroaki Fukunishi
  • Osamu Watanabe
  • Shoji Takada
Motivated by the protein structure prediction problem, we develop two variants of the Hamiltonian replica exchange methods (REMs) for efficient configuration sampling, (1) the scaled hydrophobicity REM and (2) the phantom chain REM, and compare their performance with the ordinary REM. We first point out that the ordinary REM has a shortage for the application to large systems such as biomolecules and that the Hamiltonian REM, an alternative formulation of the REM, can give a remedy for it. We then propose two examples of the Hamiltonian REM that are suitable for a coarse-grained protein model. (1) The scaled hydrophobicity REM prepares replicas that are characterized by various strengths of hydrophobic interaction. The strongest interaction that mimics aqueous solution environment makes proteins folding, while weakened hydrophobicity unfolds proteins as in organic solvent. Exchange between these environments enables proteins to escape from misfolded traps and accelerate conformational search. This resembles the roles of molecular chaperone that assist proteins to fold in vivo. (2) The phantom chain REM uses replicas that allow various degrees of atomic overlaps. By allowing atomic overlap in some of replicas, the peptide chain can cross over itself, which can accelerate conformation sampling. Using a coarse-gained model we developed, we compute equilibrium probability distributions for poly-alanine 16-mer and for a small protein by these REMs and compare the accuracy of the results. We see that the scaled hydrophobicity REM is the most efficient method among the three REMs studied.
  1. 1. J. Moult, Curr. Opin. Biotechnol. 10, 583 (1999). Google ScholarCrossref
  2. 2. R. Bonneauand D. Baker, Annu. Rev. Biophys. Biomol. Struct. 30, 173 (2001). Google ScholarCrossref
  3. 3. D. Bakerand A. Sali, Science 294, 93 (2001). Google ScholarCrossref
  4. 4. K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, J. Mol. Biol. 268, 209 (1997). Google ScholarCrossref
  5. 5. K. T. Simons, I. Ruczinski, C. Kooperberg, B. A. Fox, C. Bystroff, and D. Baker, Proteins 34, 82 (1999). Google ScholarCrossref
  6. 6. K. T. Simons, C. Strauss, and D. Baker, J. Mol. Biol. 306, 1191 (2001). Google ScholarCrossref, ISI
  7. 7. C. B. Anfinsen, Science 181, 223 (1973). Google ScholarCrossref, ISI
  8. 8. T. Lazaridisand M. Karplus, Proteins 35, 133 (1999). Google ScholarCrossref, ISI
  9. 9. A. R. Kinjo, A. Kidera, H. Nakamura, and K. Nishikawa, Eur. Biophys. J. 30, 1 (2001). Google ScholarCrossref
  10. 10. I. Ohmineand S. Saito, Acc. Chem. Res. 32, 741 (1999). Google ScholarCrossref
  11. 11. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987). Google Scholar
  12. 12. B. A. Bergand T. Neuhaus, Phys. Lett. B 267, 246 (1991). Google ScholarCrossref
  13. 13. A. Mitsutakeand Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001). Google ScholarCrossref, ISI
  14. 14. A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992). Google ScholarScitation, ISI
  15. 15. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992). Google ScholarCrossref
  16. 16. K. Hukushimaand K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). Google ScholarCrossref
  17. 17. Y. Sugitaand Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999). Google ScholarCrossref, ISI
  18. 18. K. Hukushima, Phys. Rev. E 60, 3606 (1999). Google ScholarCrossref
  19. 19. D. Gront, A. Kolinski, and J. Skolnick, J. Chem. Phys. 113, 5065 (2000). Google ScholarScitation, ISI
  20. 20. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000). Google ScholarScitation, ISI
  21. 21. Y. Sugitaand Y. Okamoto, Chem. Phys. Lett. 329, 261 (2000). Google ScholarCrossref
  22. 22. A. Mitutakeand Y. Okamoto, Chem. Phys. Lett. 332, 131 (2000). Google ScholarCrossref
  23. 23. R. Yamamotoand W. Kob, Phys. Rev. E 61, 5473 (2000). Google ScholarCrossref
  24. 24. Y. Zhangand J. Skolnick, J. Chem. Phys. 115, 5027 (2001). Google ScholarScitation
  25. 25. Y. Ishikawa, Y. Sugita, T. Nishikawa, and Y. Okamoto, Chem. Phys. Lett. 333, 199 (2001). Google ScholarCrossref
  26. 26. T. Okabe, M. Kawata, Y. Okamoto, and M. Mikami, Chem. Phys. Lett. 335, 435 (2001). Google ScholarCrossref
  27. 27. K. Y. Sanbonmatsuand A. E. Garcia, Proteins 46, 225 (2002). Google ScholarCrossref
  28. 28. M. C. Tesi, E. J. J. van Rensburg, E. Orlandini, and S. G. Whittington, J. Stat. Phys. 82, 155 (1996). Google ScholarCrossref, ISI
  29. 29. U. H. E. Hansmann, Chem. Phys. Lett. 281, 140 (1997). Google ScholarCrossref, ISI
  30. 30. Q. Yanand J. J. de Pablo, J. Chem. Phys. 111, 9509 (1999). Google ScholarScitation, ISI
  31. 31. A. M. Ferrenbergand R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988). Google ScholarCrossref, ISI
  32. 32. A. M. Ferrenbergand R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989). Google ScholarCrossref, ISI
  33. 33. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992). Google ScholarCrossref, ISI
  34. 34. S. Takada, Z. A. Luthey-Schulten, and P. G. Wolynes, J. Chem. Phys. 110, 11616 (1999). Google ScholarScitation
  35. 35. S. Takada, Proteins 42, 85 (2001). Google ScholarCrossref
  36. 36. Z. Xu, A. L. Horwich, and P. B. Sigler, Nature (London) 388, 741 (1997). Google ScholarCrossref
  37. 37. M. J. Todd, P. V. Viitanen, and G. H. Lorimer, Science 265, 659 (1994). Google ScholarCrossref
  38. 38. W. Braunand N. Go, J. Mol. Biol. 186, 611 (1985). Google ScholarCrossref
  39. 39. Y. Iba, G. Chikenji, and M. Kikuchi, J. Phys. Soc. Jpn. 67, 3327 (1998). Google ScholarCrossref
  40. 40. G. Chikenji, M. Kikuchi, and Y. Iba, Phys. Rev. Lett. 83, 1886 (1999). Google ScholarCrossref
  41. 41. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979). Google Scholar
  42. 42. M. U. Johansson, M. D. Chathau, M. Wikstrom, S. Forsen, T. Drakenberg, and L. Bjorck, J. Mol. Biol. 266, 859 (1997). Google ScholarCrossref
  43. 43. A. Irback, F. Sjunnesson, and S. Wallin, Proc. Natl. Acad. Sci. U.S.A. 97, 13614 (2000). Google ScholarCrossref
  1. © 2002 American Institute of Physics.