No Access Submitted: 07 October 2021 Accepted: 24 November 2021 Accepted Manuscript Online: 27 November 2021 Published Online: 21 January 2022
J. Chem. Phys. 156, 034704 (2022); https://doi.org/10.1063/5.0074155
more...View Affiliations
View Contributors
  • Tanmay Goswami
  • Himanshu Bhatt
  • Dharmendra Kumar Yadav
  • Ramchandra Saha
  • K. Justice Babu
  • Hirendra N. Ghosh
Efficient utilization of hot charge carriers is of utmost benefit for a semiconductor-based optoelectronic device. Herein, a one-dimensional (1D)/two-dimensional (2D) heterojunction was fabricated in the form of CdS/MoS2 nanorod/nanosheet composite and migration of hot charge carriers was being investigated with the help of transient absorption (TA) spectroscopy. The band alignment was such that both the electrons and holes in the CdS region tend to migrate into the MoS2 region following photoexcitation. The composite system is composed of optical signatures of both CdS and MoS2, with the dominance of CdS nanorods. In addition, the TA signal of MoS2 is substantially enhanced in the heterosystem at the cost of the diminished CdS signal, confirming the migration of charge carrier population from CdS to MoS2. This migration phenomenon was dominated by the hot carrier transfer. The hot carriers in the high energy states of CdS are preferentially migrated into the MoS2 states rather than being cooled to the band edge. The hot carrier transfer time for a 400 nm pump excitation was calculated to be 0.21 ps. This is much faster than the band edge electron transfer process, occurring at 2.0 ps time scale. We found that these migration processes are very much dependent on the applied pump photon energy. Higher energy pump photons are more efficient in the hot carrier transfer process and place these hot carriers in the higher energy states of MoS2, further extending charge carrier separation. This detailed spectroscopic investigation would help in the fabrication of better 1D/2D heterojunctions and advance the optoelectronic field.
T.G. acknowledges the CSIR [No. 09/1129(0009)/2017-EMR-I], India, for providing fellowship during this research tenure. H.B. D.K.Y. and R.S. acknowledge the Institute of Nano Science and Technology (INST), Mohali, India, for the fellowship. K. Justice Babu acknowledges the NPDF (No. PDF/2019/000549), India, for his postdoctoral fellowship. H. N. Ghosh acknowledges the DST, Govt. of India, for the J C Bose Fellowship (Grant No. JCB/2018/000047) and SERB/DST project (Grant No. CRG/2019/000938). The authors acknowledge the INST, Mohali, India, for providing instrumental facility and supporting this research work.
  1. 1. R. T. Ross and A. J. Nozik, J. Appl. Phys. 53, 3813 (1982). https://doi.org/10.1063/1.331124, Google ScholarScitation, ISI
  2. 2. Y. Li, H. Zhou, Y. Chen, Y. Zhao, and H. Zhu, J. Chem. Phys. 153, 044705 (2020). https://doi.org/10.1063/5.0018072, Google ScholarScitation, ISI
  3. 3. K. K. Paul, J.-H. Kim, and Y. H. Lee, Nat. Rev. Phys. 3, 178 (2021). https://doi.org/10.1038/s42254-020-00272-4, Google ScholarCrossref
  4. 4. J. Shim, D.-H. Kang, Y. Kim, H. Kum, W. Kong, S.-H. Bae, I. Almansouri, K. Lee, J.-H. Park, and J. Kim, Carbon 133, 78 (2018). https://doi.org/10.1016/j.carbon.2018.02.104, Google ScholarCrossref, ISI
  5. 5. S. Ahn, H. Chung, W. Chen, M. A. Moreno-Gonzalez, and O. Vazquez-Mena, J. Chem. Phys. 151, 234705 (2019). https://doi.org/10.1063/1.5132562, Google ScholarScitation, ISI
  6. 6. X. Wang, X. Zhang, W. Gao, Y. Sang, Y. Wang, and H. Liu, J. Chem. Phys. 152, 214701 (2020). https://doi.org/10.1063/5.0008374, Google ScholarScitation, ISI
  7. 7. N. Flöry, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, and L. Novotny, Nat. Nanotechnol. 15, 118 (2020). https://doi.org/10.1038/s41565-019-0602-z, Google ScholarCrossref
  8. 8. X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, Nano Energy 16, 310 (2015). https://doi.org/10.1016/j.nanoen.2015.07.003, Google ScholarCrossref
  9. 9. Z. Liu, Y. Zhu, J. K. El-Demellawi, D. B. Velusamy, A. M. El-Zohry, O. M. Bakr, O. F. Mohammed, and H. N. Alshareef, ACS Energy Lett. 4, 2315 (2019). https://doi.org/10.1021/acsenergylett.9b01339, Google ScholarCrossref
  10. 10. A. Pandey and P. Guyot-Sionnest, J. Phys. Chem. Lett. 1, 45 (2010). https://doi.org/10.1021/jz900022z, Google ScholarCrossref
  11. 11. T. Goswami, R. Rani, K. S. Hazra, and H. N. Ghosh, J. Phys. Chem. Lett. 10, 3057 (2019). https://doi.org/10.1021/acs.jpclett.9b01022, Google ScholarCrossref
  12. 12. N. S. Karan, A. Mandal, S. K. Panda, and N. Pradhan, J. Phys. Chem. C 114, 8873 (2010). https://doi.org/10.1021/jp1024944, Google ScholarCrossref
  13. 13. F. Liu, Z. Wang, Y. Weng, R. Shi, W. Ma, and Y. Chen, ChemCatChem 13, 1355 (2021). https://doi.org/10.1002/cctc.202001847, Google ScholarCrossref
  14. 14. R. Shi, H.-F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W.-F. Fu, C.-M. Che, and Y. Chen, Adv. Mater. 30, 1705941 (2018). https://doi.org/10.1002/adma.201705941, Google ScholarCrossref
  15. 15. R. K. Chava, J. Y. Do, and M. Kang, ACS Sustainable Chem. Eng. 6, 6445 (2018). https://doi.org/10.1021/acssuschemeng.8b00249, Google ScholarCrossref
  16. 16. K. Zhang, M. Fujitsuka, Y. Du, and T. Majima, ACS Appl. Mater. Interfaces 10, 20458 (2018). https://doi.org/10.1021/acsami.8b04080, Google ScholarCrossref
  17. 17. M. Zhang, Z. Shao, T. Jiang, X. Wu, B. Zhang, X. Zhang, F. Xia, and J. Jie, J. Phys. Chem. C 123, 15794 (2019). https://doi.org/10.1021/acs.jpcc.9b02938, Google ScholarCrossref
  18. 18. H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, and T. Zhai, Adv. Mater. 25, 3017 (2013). https://doi.org/10.1002/adma.201300244, Google ScholarCrossref
  19. 19. K. Deng and L. Li, Adv. Mater. 26, 2619 (2014). https://doi.org/10.1002/adma.201304621, Google ScholarCrossref
  20. 20. B. N. Pal, Y. Ghosh, S. Brovelli, R. Laocharoensuk, V. I. Klimov, J. A. Hollingsworth, and H. Htoon, Nano Lett. 12, 331 (2012). https://doi.org/10.1021/nl203620f, Google ScholarCrossref
  21. 21. P. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010). https://doi.org/10.1021/nl100665r, Google ScholarCrossref, ISI
  22. 22. G. Kaur, R. Saha, K. J. Babu, A. Shukla, and H. N. Ghosh, J. Phys. Chem. C 125, 10516 (2021). https://doi.org/10.1021/acs.jpcc.1c02233, Google ScholarCrossref
  23. 23. G. Grimaldi, R. W. Crisp, S. ten Brinck, F. Zapata, M. van Ouwendorp, N. Renaud, N. Kirkwood, W. H. Evers, S. Kinge, I. Infante, L. D. A. Siebbeles, and A. J. Houtepen, Nat. Commun. 9, 2310 (2018). https://doi.org/10.1038/s41467-018-04623-9, Google ScholarCrossref
  24. 24. J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C.-T. Au, and S.-F. Yin, ChemSusChem 9, 624 (2016). https://doi.org/10.1002/cssc.201501544, Google ScholarCrossref
  25. 25. X. Yang, W. Liu, C. Han, C. Zhao, H. Tang, Q. Liu, and J. Xu, Mater. Today Phys. 15, 100261 (2020). https://doi.org/10.1016/j.mtphys.2020.100261, Google ScholarCrossref
  26. 26. G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, and L. Cao, J. Am. Chem. Soc. 138, 16632 (2016). https://doi.org/10.1021/jacs.6b05940, Google ScholarCrossref
  27. 27. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279, Google ScholarCrossref, ISI
  28. 28. X. Shi, M. Fujitsuka, S. Kim, and T. Majima, Small 14, 1703277 (2018). https://doi.org/10.1002/smll.201703277, Google ScholarCrossref
  29. 29. X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, and C. Li, J. Phys. Chem. C 114, 1963 (2010). https://doi.org/10.1021/jp904350e, Google ScholarCrossref, ISI
  30. 30. K. Chang, M. Li, T. Wang, S. Ouyang, P. Li, L. Liu, and J. Ye, Adv. Energy Mater. 5, 1402279 (2015). https://doi.org/10.1002/aenm.201402279, Google ScholarCrossref
  31. 31. X.-L. Yin, L.-L. Li, W.-J. Jiang, Y. Zhang, X. Zhang, L.-J. Wan, and J.-S. Hu, ACS Appl. Mater. Interfaces 8, 15258 (2016). https://doi.org/10.1021/acsami.6b02687, Google ScholarCrossref
  32. 32. S. Iqbal, Z. Pan, and K. Zhou, Nanoscale 9, 6638 (2017). https://doi.org/10.1039/c7nr01705g, Google ScholarCrossref
  33. 33. A. Wu, C. Tian, Y. Jiao, Q. Yan, G. Yang, and H. Fu, Appl. Catal., B 203, 955 (2017). https://doi.org/10.1016/j.apcatb.2016.11.009, Google ScholarCrossref
  34. 34. J. Chen, X.-J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue, and H. Zhang, Angew. Chem., Int. Ed. 54, 1210 (2015). https://doi.org/10.1002/anie.201410172, Google ScholarCrossref
  35. 35. Z. Yan, L. Du, and D. Lee Phillips, RSC Adv. 7, 55993 (2017). https://doi.org/10.1039/c7ra12118k, Google ScholarCrossref
  36. 36. J. Cho, N. S. Suwandaratne, S. Razek, Y.-H. Choi, L. F. J. Piper, D. F. Watson, and S. Banerjee, ACS Appl. Mater. Interfaces 12, 43728 (2020). https://doi.org/10.1021/acsami.0c12583, Google ScholarCrossref
  37. 37. Z. Lou, M. Zhu, X. Yang, Y. Zhang, M.-H. Whangbo, B. Li, and B. Huang, Appl. Catal., B 226, 10 (2018). https://doi.org/10.1016/j.apcatb.2017.12.023, Google ScholarCrossref
  38. 38. T. Goswami, H. Bhatt, K. J. Babu, G. Kaur, N. Ghorai, and H. N. Ghosh, J. Phys. Chem. Lett. 12, 6526 (2021). https://doi.org/10.1021/acs.jpclett.1c01627, Google ScholarCrossref
  39. 39. Z.-J. Jiang and D. F. Kelley, J. Phys. Chem. C 115, 4594 (2011). https://doi.org/10.1021/jp112424z, Google ScholarCrossref
  40. 40. C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, and J. K. Stolarczyk, Nat. Energy 3, 862 (2018). https://doi.org/10.1038/s41560-018-0229-6, Google ScholarCrossref
  41. 41. K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, and T. Lian, J. Am. Chem. Soc. 134, 10337 (2012). https://doi.org/10.1021/ja303306u, Google ScholarCrossref, ISI
  42. 42. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000). https://doi.org/10.1021/jp9944132, Google ScholarCrossref, ISI
  43. 43. T. Goswami, D. K. Yadav, H. Bhatt, G. Kaur, A. Shukla, K. J. Babu, and H. N. Ghosh, J. Phys. Chem. Lett. 12, 5000 (2021). https://doi.org/10.1021/acs.jpclett.1c01203, Google ScholarCrossref
  44. 44. T. Okuhata, T. Katayama, and N. Tamai, J. Phys. Chem. C 124, 1099 (2020). https://doi.org/10.1021/acs.jpcc.9b09042, Google ScholarCrossref
  45. 45. B. Choudhury, M. Dey, and A. Choudhury, Appl. Nanosci. 4, 499 (2014). https://doi.org/10.1007/s13204-013-0226-9, Google ScholarCrossref
  46. 46. N. Saigal, V. Sugunakar, and S. Ghosh, Appl. Phys. Lett. 108, 132105 (2016). https://doi.org/10.1063/1.4945047, Google ScholarScitation, ISI
  47. 47. J. H. Strait, P. Nene, and F. Rana, Phys. Rev. B 90, 245402 (2014). https://doi.org/10.1103/physrevb.90.245402, Google ScholarCrossref
  48. 48. S. Mandal, S. Mukherjee, C. K. De, D. Roy, S. Ghosh, and P. K. Mandal, J. Phys. Chem. Lett. 11, 1702 (2020). https://doi.org/10.1021/acs.jpclett.0c00385, Google ScholarCrossref
  1. © 2022 Author(s). Published under an exclusive license by AIP Publishing.