No Access Submitted: 22 September 2021 Accepted: 28 October 2021 Accepted Manuscript Online: 01 November 2021 Published Online: 15 November 2021
J. Chem. Phys. 155, 194103 (2021);
more...View Affiliations
View Contributors
  • Sehr Naseem-Khan
  • Jean-Philip Piquemal
  • G. Andrés Cisneros
The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFFs). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and exchange-repulsion energies are now computed with separate frozen molecular densities and a new dispersion formulation inspired by the Sum of Interactions Between Fragments Ab initio Computed polFF, which has been implemented to describe the dispersion and charge-transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved and the importance of the accurate reproduction for each separate contribution.
The authors thank Professor Nohad Gresh (Sorbonne Université) for the initial parameter set derived from SAPT(DFT) for Edisp+ctGEM. This work was funded by NIH Grant No. R01GM108583. Computational time was provided by the University of North Texas CASCaMs CRUNTCh3 high-performance cluster partially supported by NSF Grant No. CHE-1531468 and XSEDE supported by Project No. TG-CHE160044.
  1. 1. G. A. Cisneros, K. T. Wikfeldt, L. Ojamäe, J. Lu, Y. Xu, H. Torabifard, A. P. Bartók, G. Csányi, V. Molinero, and F. Paesani, “Modeling molecular interactions in water: From pairwise to many-body potential energy functions,” Chem. Rev. 116, 7501–7528 (2016)., Google ScholarCrossref, ISI
  2. 2. P. Ren and J. W. Ponder, “Polarizable atomic multipole water model for molecular mechanics simulation,” J. Phys. Chem. B 107, 5933–5947 (2003)., Google ScholarCrossref, ISI
  3. 3. C. Liu, J.-P. Piquemal, and P. Ren, “AMOEBA+ classical potential for modeling molecular interactions,” J. Chem. Theory Comput. 15, 4122–4139 (2019)., Google ScholarCrossref
  4. 4. N. Gresh, G. A. Cisneros, T. A. Darden, and J.-P. Piquemal, “Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand−macromolecule complexes. A bottom-up strategy,” J. Chem. Theory Comput. 3, 1960–1986 (2007)., Google ScholarCrossref
  5. 5. P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss, D. Garmer, H. Basch, and D. Cohen, “An effective fragment method for modeling solvent effects in quantum mechanical calculations,” J. Chem. Phys. 105, 1968–1986 (1996)., Google ScholarScitation, ISI
  6. 6. W. Xie and J. Gao, “Design of a next generation force field: The X-POL potential,” J. Chem. Theory Comput. 3, 1890–1900 (2007)., Google ScholarCrossref
  7. 7. W. Xie, M. Orozco, D. G. Truhlar, and J. Gao, “X-Pol potential: An electronic structure-based force field for molecular dynamics simulation of a solvated protein in water,” J. Chem. Theory Comput. 5, 459–467 (2009)., Google ScholarCrossref
  8. 8. J. M. Hermida-Ramón, S. Brdarski, G. Karlström, and U. Berg, “Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields,” J. Comput. Chem. 24, 161–176 (2003)., Google ScholarCrossref
  9. 9. J. A. Rackers, R. R. Silva, Z. Wang, and J. W. Ponder, “Polarizable water potential derived from a model electron density,” J. Chem. Theory Comput. (published online 2021) arXiv:2106.13116 [physics.chem-ph]., Google ScholarCrossref
  10. 10. K. Kitaura and K. Morokuma, “A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation,” Int. J. Quantum Chem. 10, 325–340 (1976)., Google ScholarCrossref
  11. 11. W. J. Stevens and W. H. Fink, “Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer,” Chem. Phys. Lett. 139, 15–22 (1987)., Google ScholarCrossref
  12. 12. P. S. Bagus, K. Hermann, and C. W. Bauschlicher, “A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3,” J. Chem. Phys. 80, 4378–4386 (1984)., Google ScholarScitation, ISI
  13. 13. B. Jeziorski, R. Moszynski, and K. Szalewicz, “Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes,” Chem. Rev. 94, 1887–1930 (1994)., Google ScholarCrossref, ISI
  14. 14. T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, “Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies,” J. Chem. Phys. 140, 094106 (2014)., Google ScholarScitation, ISI
  15. 15. A. Heßelmann and G. Jansen, “First-order intermolecular interaction energies from Kohn–Sham orbitals,” Chem. Phys. Lett. 357, 464–470 (2002)., Google ScholarCrossref, ISI
  16. 16. A. Heßelmann and G. Jansen, “Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory,” Chem. Phys. Lett. 362, 319–325 (2002)., Google ScholarCrossref, ISI
  17. 17. A. Heßelmann and G. Jansen, “Intermolecular dispersion energies from time-dependent density functional theory,” Chem. Phys. Lett. 367, 778–784 (2003)., Google ScholarCrossref, ISI
  18. 18. A. J. Misquitta and K. Szalewicz, “Intermolecular forces from asymptotically corrected density functional description of monomers,” Chem. Phys. Lett. 357, 301–306 (2002)., Google ScholarCrossref, ISI
  19. 19. A. J. Misquitta, B. Jeziorski, and K. Szalewicz, “Dispersion energy from density-functional theory description of monomers,” Phys. Rev. Lett. 91, 033201 (2003)., Google ScholarCrossref
  20. 20. A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz, “Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations,” J. Chem. Phys. 123, 214103 (2005)., Google ScholarScitation, ISI
  21. 21. A. J. Misquitta, “Charge-transfer from regularized symmetry-adapted perturbation theory,” J. Chem. Theory Comput. 9, 5313–5326 (2013)., Google ScholarCrossref
  22. 22. G. A. Cisneros, J. P. Piquemal, and T. A. Darden, “Intermolecular electrostatic energies using density fitting,” J. Chem. Phys. 123, 044109 (2005)., Google ScholarScitation, ISI
  23. 23. S. Boys and I. Shavit, “A fundamental calculation of the energy surface for the system of three hydrogen atoms,” NTIS, Springfield, VA, AD212985, 1959. Google Scholar
  24. 24. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, “On first-row diatomic molecules and local density models,” J. Chem. Phys. 71, 4993–4999 (1979)., Google ScholarScitation, ISI
  25. 25. A. M. Köster, P. Calaminici, Z. Gómez, and U. Reveles, “Density functional theory calculation of transition metal clusters,” in Reviews of Modern Quantum Chemistry (World Scientific, 2002), pp. 1439–1475. Google ScholarCrossref
  26. 26. G. A. Cisneros, D. Elking, J.-P. Piquemal, and T. A. Darden, “Numerical fitting of molecular properties to Hermite Gaussians,” J. Phys. Chem. A 111, 12049–12056 (2007)., Google ScholarCrossref
  27. 27. H. Gökcan, E. Kratz, T. A. Darden, J.-P. Piquemal, and G. A. Cisneros, “QM/MM simulations with the Gaussian electrostatic model: A density-based polarizable potential,” J. Phys. Chem. Lett. 9, 3062–3067 (2018)., Google ScholarCrossref
  28. 28. J. Nochebuena, S. Naseem-Khan, and G. A. Cisneros, “Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1515 (2021)., Google ScholarCrossref
  29. 29. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 8577–8593 (1995)., Google ScholarScitation, ISI
  30. 30. D. York and W. Yang, “The fast Fourier Poisson method for calculating Ewald sums,” J. Chem. Phys. 101, 3298–3300 (1994)., Google ScholarScitation, ISI
  31. 31. R. E. Duke and G. A. Cisneros, “Ewald-based methods for Gaussian integral evaluation: Application to a new parameterization of GEM*,” J. Mol. Model. 25, 307 (2019)., Google ScholarCrossref
  32. 32. G. A. Cisneros, J.-P. Piquemal, and T. A. Darden, “Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods,” J. Chem. Phys. 125, 184101 (2006)., Google ScholarScitation, ISI
  33. 33. S. Naseem-Khan, N. Gresh, A. J. Misquitta, and J.-P. Piquemal, “An assessment of SAPT and supermolecular EDAs approaches for the development of separable and polarizable force fields,” J. Chem. Theory Comput. 17, 2759–2774 (2021); arXiv:2008.01436., Google ScholarCrossref
  34. 34. S. P. Veccham, J. Lee, Y. Mao, P. R. Horn, and M. Head-Gordon, “A non-perturbative pairwise-additive analysis of charge transfer contributions to intermolecular interaction energies,” Phys. Chem. Chem. Phys. 23, 928–943 (2021); arXiv:2011.04918., Google ScholarCrossref
  35. 35. S. Naseem-Khan, L. Lagardère, G. A. Cisneros, P. Ren, N. Gresh, and J.-P. Piquemal, “Molecular dynamics with the SIBFA many-body polarizable force field: From symmetry adapted perturbation theory to condensed phase properties” (to be published). Google Scholar
  36. 36. L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M. Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, N. Gresh, Y. Maday, P. Y. Ren, J. W. Ponder, and J.-P. Piquemal, “Tinker-HP: A massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields,” Chem. Sci. 9, 956–972 (2018)., Google ScholarCrossref
  37. 37. R. E. Duke, O. N. Starovoytov, J.-P. Piquemal, G. A. Cisneros, and A. Cisneros, “GEM*: A molecular electronic density-based force field for molecular dynamics simulations,” J. Chem. Theory Comput. 10, 1361–1365 (2014)., Google ScholarCrossref
  38. 38. J.-P. Piquemal and G. A. Cisneros, Many-Body Effects and Electrostatics in Biomolecules (Pan Standford Publishing, 2015), Vol. 7, pp. 978–981. Google Scholar
  39. 39. V. Babin, G. R. Medders, and F. Paesani, “Toward a universal water model: First principles simulations from the dimer to the liquid phase,” J. Phys. Chem. Lett. 3, 3765–3769 (2012); arXiv:1210.7022., Google ScholarCrossref
  40. 40. V. Babin, C. Leforestier, and F. Paesani, “Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient,” J. Chem. Theory Comput. 9, 5395–5403 (2013)., Google ScholarCrossref, ISI
  41. 41. B. J. Smith, D. J. Swanton, J. A. Pople, H. F. Schaefer, and L. Radom, “Transition structures for the interchange of hydrogen atoms within the water dimer,” J. Chem. Phys. 92, 1240–1247 (1990)., Google ScholarScitation, ISI
  42. 42. G. A. Cisneros, “Application of Gaussian electrostatic model (GEM) distributed multipoles in the AMOEBA force field,” J. Chem. Theory Comput. 8, 5072–5080 (2012)., Google ScholarCrossref
  43. 43. H. Torabifard, O. N. Starovoytov, P. Ren, and G. A. Cisneros, “Development of an AMOEBA water model using GEM distributed multipoles,” Theor. Chem. Acc. 134, 101 (2015)., Google ScholarCrossref
  44. 44. J.-P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, and T. A. Darden, “Towards a force field based on density fitting,” J. Chem. Phys. 124, 104101 (2006)., Google ScholarScitation, ISI
  45. 45. B. Temelso, K. A. Archer, and G. C. Shields, “Benchmark structures and binding energies of small water clusters with anharmonicity corrections,” J. Phys. Chem. A 115, 12034–12046 (2011)., Google ScholarCrossref
  46. 46. A. K. Soper and M. G. Phillips, “A new determination of the structure of water at 25 °C,” Chem. Phys. 107, 47–60 (1986)., Google ScholarCrossref
  47. 47. A. K. Soper, “The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa,” Chem. Phys. 258, 121–137 (2000)., Google ScholarCrossref, ISI
  48. 48. L. B. Skinner, C. Huang, D. Schlesinger, L. G. Pettersson, A. Nilsson, and C. J. Benmore, “Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range,” J. Chem. Phys. 138, 074506 (2013)., Google ScholarScitation, ISI
  49. 49. W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002)., Google ScholarScitation, ISI
  50. 50. S. K. Reddy, S. C. Straight, P. Bajaj, C. Huy Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Götz, and F. Paesani, “On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice,” J. Chem. Phys. 145, 194504 (2016); arXiv:1609.02884., Google ScholarScitation, ISI
  51. 51. G. S. Fanourgakis, G. K. Schenter, and S. S. Xantheas, “A quantitative account of quantum effects in liquid water,” J. Chem. Phys. 125, 141102 (2006)., Google ScholarScitation, ISI
  52. 52. F. Paesani, S. Iuchi, and G. A. Voth, “Quantum effects in liquid water from an ab initio-based polarizable force field,” J. Chem. Phys. 127, 074506 (2007)., Google ScholarScitation, ISI
  1. © 2021 Author(s). Published under an exclusive license by AIP Publishing.