No Access Submitted: 23 July 2021 Accepted: 14 December 2021 Published Online: 19 January 2022
Chem. Phys. Rev. 3, 011304 (2022);
more...View Affiliations
View Contributors
  • Abhinandan Banerjee
  • Barbara Blasiak
  • Armita Dash
  • Boguslaw Tomanek
  • Frank C. J. M. van Veggel
  • Simon Trudel
There is a need for non-invasive diagnostic tools to detect and monitor the occurrence of diseases. Ideally, this can be done without resorting to ionizing radiation, especially when multiple rounds of imaging are required. Magnetic resonance imaging (MRI), a form of three-dimensional nuclear magnetic resonance, has become a common tool of choice for diagnosticians. Due to the low contrast difference between healthy and diseased tissue, contrast agents—magnetic species administered to the patient prior to imaging—are routinely used for contrast improvement. High-field (B0 4.7 T, 1H Larmor frequency 200 MHz) MRI offers advantages in terms of better signal-to-noise ratio, as well as improved spectral resolution for certain applications. New contrast agents are being developed for high-field MRI, the topic of this review. After discussing the purpose of contrast agents and the advantages and potential issues of high-field MRI, we discuss recent developments in the field of contrast agent design, synthesis, and applications, citing examples of high-field MRI-ready molecular contrast agents, as well as nanoparticulate contrast agents based on various inorganic materials (e.g., coordination polymers, transition metal oxides, or lanthanide halides). We will discuss how certain aspects (composition, shape, ligands) affect the contrasting abilities of these agents. Finally, we highlight recent developments in the promising field of multifunctional probes, wherein multiple imaging and/or therapeutic modalities are combined in a single species. As high-field MRI becomes more commonplace in the clinical setting, such new contrast agents are needed to provide optimized imaging. This will facilitate the clinician's task in resolving pathologies for more efficient diagnosis and patient treatment.
This work was funded by NSERC (Discovery Grant), Alberta Innovates-Health Solutions (Collaborative Research and Innovation Opportunities grant), the National Science Center, Poland (Grant Nos. OPUS 2018/31/B/ST5/03605 and Harmonia 2018/30/M/NZ5/00844), and the University of Calgary (Eyes High Fellowship and T. Chen Fong Postdoctoral Fellowship in Medical Imaging for A.B.).
  1. 1. M. Mercuri, T. Sheth, and M. K. Natarajan, “ Radiation exposure from medical imaging: A silent harm?,” Can. Med. Assoc. J. 183, 413–414 (2011)., Google ScholarCrossref
  2. 2. M. S. Pearce, J. A. Salotti, M. P. Little, K. McHugh, C. Lee, K. P. Kim, N. L. Howe, C. M. Ronckers, P. Rajaraman, A. W. Craft, L. Parker, and A. B. de Gonzalez, “ Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study,” Lancet 380, 499–505 (2012)., Google ScholarCrossref
  3. 3. J. D. Mathews, A. V. Forsythe, Z. Brady, M. W. Butler, S. K. Goergen, G. B. Byrnes, G. G. Giles, A. B. Wallace, P. R. Anderson, T. A. Guiver, J. G. Dowty, A. C. Bickerstaffe, and S. C. Darby, “ Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians,” BMJ 346, f2360 (2013)., Google ScholarCrossref
  4. 4. W. R. Hendee, “ Breast MRI: Fundamentals and technical aspects,” Med. Phys. 35, 1163–1164 (2008)., Google ScholarCrossref
  5. 5. J. H. Duyn, “ The future of ultra-high field MRI and fMRI for study of the human brain,” Neuroimage 62, 1241–1248 (2012)., Google ScholarCrossref
  6. 6. E. Moser, E. Laistler, F. Schmitt, and G. Kontaxis, “ Ultra-high field NMR and MRI—The role of magnet technology to increase sensitivity and specificity,” Front. Phys. 5, 1–15 (2017)., Google ScholarCrossref
  7. 7. J. V. Rispoli, M. D. Wilcox, S. By, S. M. Wright, and M. P. McDougall, “ Effects of coplanar shielding for high field MRI,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 7592157, 6250–6253 (2016)., Google ScholarCrossref
  8. 8. M. M. Britton, “ Magnetic resonance imaging of chemistry,” Chem. Soc. Rev. 39, 4036–4043 (2010)., Google ScholarCrossref
  9. 9. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H.-J. Weinmann, “ Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths,” Invest. Radiol. 40, 715–724 (2005)., Google ScholarCrossref
  10. 10. B. Blasiak, B. Tomanek, A. Abulrob, U. Iqbal, D. Stanimirovic, H. Albaghdadi, T. Foniok, X. Lun, P. Forsyth, and G. R. Sutherland, “ Detection of T2 changes in an early mouse brain tumor,” Magn. Res. Imag. 28, 784–789 (2010)., Google ScholarCrossref
  11. 11. V. M. Timpone and S. H. Patel, “ MRI of a syrinx: Is contrast material always necessary?” Am. J. Roentgen. 204, 1082–1085 (2015)., Google ScholarCrossref
  12. 12. J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, and P. Caravan, “ Chemistry of MRI contrast agents: Current challenges and new frontiers,” Chem. Rev. 119, 957–1057 (2019)., Google ScholarCrossref
  13. 13. B. Wu, G. Warnock, M. Zaiss, C. Lin, M. Chen, Z. Zhou, L. Mu, D. Nanz, R. Tuura, and G. Delso, “ An overview of CEST MRI for non-MR physicists,” EJNMMI Phys. 3, 19 (2016)., Google ScholarCrossref
  14. 14. J. Ruiz-Cabello, B. P. Barnett, P. A. Bottomley, and J. W. Bulte, “ Fluorine (19F) MRS and MRI in biomedicine,” NMR Biomed. 24, 114–129 (2011)., Google ScholarCrossref
  15. 15. Z. J. Wang, M. A. Ohliger, P. E. Z. Larson, J. W. Gordon, R. A. Bok, J. Slater, J. E. Villanueva-Meyer, C. P. Hess, J. Kurhanewicz, and D. B. Vigneron, “ Hyperpolarized 13C MRI: State of the art and future directions,” Radiology 291, 273–284 (2019)., Google ScholarCrossref
  16. 16. A. J. L. Villaraza, A. Bumb, and M. W. Brechbiel, “ Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: The interplay between size, function, and pharmacokinetics,” Chem. Rev. 110, 2921–2959 (2010)., Google ScholarCrossref
  17. 17. P. Hermann, J. Kotek, V. Kubicek, and I. Lukes, “ Gadolinium(III) complexes as MRI contrast agents: Ligand design and properties of the complexes,” Dalton Trans. 3027–3047 (2008)., Google ScholarCrossref
  18. 18. J. Garcia and M. J. Allen, “ Developments in the coordination chemistry of europium(II),” Eur. J. Inorg. Chem. 2012, 4550–4563., Google ScholarCrossref
  19. 19. J.-M. Kim, Y.-K. Jeong, Y. Sohn, and J.-G. Kang, “ Synthesis and photophysical properties of an Eu(II)-complex/PS blend: Role of Ag nanoparticles in surface-enhanced luminescence,” Langmuir 28, 9842–9848 (2012)., Google ScholarCrossref
  20. 20. D. R. Roberts, S. M. Lindhorst, C. T. Welsh, K. R. Maravilla, M. N. Herring, K. A. Braun, B. H. Thiers, and W. C. Davis, “ High levels of gadolinium deposition in the skin of a patient with normal renal function,” Invest. Radiol. 51, 280–289 (2016)., Google ScholarCrossref
  21. 21. B. Blasiak, J. Landry, R. Tyson, J. Sharp, U. Iqbal, A. Abulrob, D. Rushford, J. Matyas, D. Ponjevic, G. R. Sutherland, S. Wolfsberger, and B. Tomanek, “ Molecular susceptibility weighted imaging of the glioma rim in a mouse model,” J. Neurosc. Methods 226, 132–138 (2014)., Google ScholarCrossref
  22. 22. B. Blasiak, S. Barnes, T. Foniok, D. Rushforth, J. Matyas, D. Ponjevic, W. P. Weglarz, R. Tyson, U. Iqbal, A. Abulrob, G. R. Sutherland, A. Obenaus, and B. Tomanek, “ Comparison of T2 and T 2 -weighted MR molecular imaging of a mouse model of glioma,” BMC Med. Imaging 13, 20–28 (2013)., Google ScholarCrossref
  23. 23. L. M. De Leon-Rodriguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, and A. D. Sherry, “ Basic MR relaxation mechanisms and contrast agent design,” J. Magn. Reson. Imaging 42, 545–565 (2015)., Google ScholarCrossref
  24. 24. P. Caravan, C. T. Farrar, L. Frullano, and R. Uppal, “ Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents,” Contrast Media Mol. Imaging 4, 89–100 (2008)., Google ScholarCrossref
  25. 25. R. B. Lauffer, “ Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design,” Chem. Rev. 87, 901–927 (1987)., Google ScholarCrossref
  26. 26. S. Aime, M. Botta, M. Fasano, and E. Terreno, “ Lanthanide(III) chelates for NMR biomedical applications,” Chem. Soc. Rev. 27, 19–29 (1998)., Google ScholarCrossref
  27. 27. A. Roch, R. N. Muller, and P. Gillis, “ Theory of proton relaxation induced by superparamagnetic particles,” J. Chem. Phys. 110, 5403–5411 (1999)., Google ScholarScitation
  28. 28. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed., edited by A. S. Merbach, L. Helm, and E. Tóth (Wiley, 2013), ISBN: 978-1-118-50367-6. Google Scholar
  29. 29. B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “ Applications of nanoparticles for MRI cancer diagnosis and therapy,” J. Nanomater. 2013, 148578., Google ScholarCrossref
  30. 30. J. Estelrich, M. J. Sanchez-Martin, and M. A. Busquets, “ Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents,” Int. J. Nanomed. 10, 1727–1741 (2015)., Google ScholarCrossref
  31. 31. A. N. W. Kuda-Wedagedara and M. J. Allen, “ Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths,” Analyst 139, 4401–4409 (2014)., Google ScholarCrossref
  32. 32. T. Tegafaw, W. Xu, M. W. Ahmad, J. S. Baeck, Y. Chang, J. E. Bae, K. S. Chae, T. J. Kim, and G. H. Lee, “ Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: Synthesis, characterization, and in vivo application,” Nanotechnology 26, 365102 (2015)., Google ScholarCrossref
  33. 33. Y,-W. Jun, J.-H. Lee, and J. Cheon, “ Chemical design of nanoparticle probes for high-performance magnetic resonance imaging,” Angew. Chem. Int. Ed. 47, 5122–5135 (2008)., Google ScholarCrossref
  34. 34. H. E. Daldrup-Link, “ Ten things you might not know about iron oxide nanoparticles,” Radiology 284, 616–629 (2017)., Google ScholarCrossref
  35. 35. T. Vaughan, L. DelaBarre, C. Snyder, J. Tian, C. Akgun, D. Shrivastava, W. Liu, C. Olson, G. Adriany, J. Strupp, P. Andersen, A. Gopinath, P.-F. van de Moortele, M. Garwood, and K. Ugurbil, “ 9.4T human MRI: Preliminary results,” Magn. Reson. Med. 56, 1274–1282 (2006)., Google ScholarCrossref
  36. 36. J. H. G. Helthuis, A. van der Zwan, T. P. C. van Doormaal, R. L. A. W. Bleys, A. A. Harteveld, A. van der Toorn, M. Brozici, J. Hendrikse, and J. J. M. Zwanenburg, “ High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry,” Sci. Rep. 8, 14235 (2018)., Google ScholarCrossref
  37. 37. A. Sadeghi-Tarakameh, L. DelaBarre, R. L. Lagore, A. Torrado-Carvajal, X. Wu, A. Grant, G. Adriany, G. J. Metzger, P.-F. Van de Moortele, K. Ugurbil, E. Atalar, and Y. Eryaman, “ In vivo human head MRI at 10.5T: A radiofrequency safety study and preliminary imaging results,” Magn. Reson. Med. 84, 484–496 (2020)., Google ScholarCrossref
  38. 38. R. Voelker, “ Twice the power in new MRI,” JAMA 318, 1858–1858 (2017)., Google ScholarCrossref
  39. 39. A. Nowogrodzki, “ The world's strongest MRI machines are pushing human imaging to new limits,” Nature 563, 24–26 (2018)., Google ScholarCrossref
  40. 40. Z. Liang, Q. Wang, H. Liao, M. Zhao, J. Lee, C. Yang, F. Li, and D. Ling, “ Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging,” Nat. Commun. 12, 3840 (2021)., Google ScholarCrossref
  41. 41. M. Elmaoglu and A. Celik, MRI Handbook: MR Physics, Patient Positioning, and Protocols ( Springer-Verlag, New York, 2012). Google ScholarCrossref
  42. 42. J. P. Marques, F. F. J. Simonis, and A. G. Webb, “ Low-field MRI: An MR physics perspective,” J. Magn. Reson. Imaging 49, 1528–1542 (2019)., Google ScholarCrossref
  43. 43. D. I. Hoult and R. Richards, “ The signal-to-noise ratio of the nuclear magnetic resonance experiment,” J. Magn. Reson. 213, 329–343 (2011)., Google ScholarCrossref
  44. 44. D. I. Hoult, “ Sensitivity and power deposition in a high-field imaging experiment,” J. Magn. Reson. Imaging 12, 46–67 (2000).<46::AID-JMRI6>3.0.CO;2-D, Google ScholarCrossref
  45. 45. M. E. Ladd, P. Bachert, M. Meyerspeer, E. Moser, A. M. Nagel, D. G. Norris, S. Schmitter, O. Speck, S. Straub, and M. Zaiss, “ Pros and cons of ultra-high-field MRI/MRS for human application,” Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018)., Google ScholarCrossref
  46. 46. R. R. Regatte and M. E. Schweitzer, “ Ultra-high-field MRI of the musculoskeletal system at 7.0T,” J. Magn. Reson. Imaging 25, 262–269 (2007)., Google ScholarCrossref
  47. 47. A. G. van der Kolk, J. Hendrikse, J. J. Zwanenburg, F. Visser, and P. R. Luijten, “ Clinical applications of 7T MRI in the brain,” Eur. J. Radiol. 82, 708–718 (2013)., Google ScholarCrossref
  48. 48. G. Oz, I. Tkac, and K. Uğurbil, “ Animal models and high field imaging and spectroscopy,” Dialogues Clin. Neurosci. 15, 263–278 (2013)., Google ScholarCrossref
  49. 49. M. Inglese, L. Fleysher, N. Oesingmann, and M. Petracca, “ Clinical applications of ultra-high field magnetic resonance imaging in multiple sclerosis,” Expert Rev. Neurother. 18, 221–230 (2018)., Google ScholarCrossref
  50. 50. M. J. P. van Osch and A. G. Webb, “ Safety of ultra-high field MRI: What are the specific risks?” Curr,” Radiol. Rep. 2, 61 (2014)., Google ScholarCrossref
  51. 51. B. R. Plantinga, Y. Temel, A. Roebroeck, K. Uludağ, D. Ivanov, M. L. Kuijf, and B. M. ter Haar Romenij, “ Ultra-high field magnetic resonance imaging of the basal ganglia and related structures,” Front. Hum. Neurosci. 8, 876 (2014)., Google ScholarCrossref
  52. 52. C.-A. Park, C.-K. Kang, Y.-B. Kim, and Z.-H. Cho, “ Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography,” NeuroImage 168, 269–278 (2018)., Google ScholarCrossref
  53. 53. L. Quettier, G. Aubert, J. Belorgey, C. Berriaud, P. Bredy, G. Dilasser, O. Dubois, G. Gilgrass, Q. Guihard, V. Jannot, F.-P. Juster, H. Lannou, F. Molinie, F. Nunio, A. Roger, T. Schild, L. Scola, A. Sinanna, V. Stepanov, and P. Vedrine, “ Commissioning completion of the Iseult Whole Body 11.7 T MRI system,” IEEE Trans. Appl. Supercond. 30, 4401705 (2020)., Google ScholarCrossref
  54. 54. S. Trattnig, E. Springer, W. Bogner, G. Hangel, B. Strasser, B. Dymerska, P. L. Cardoso, and S. D. Robinson, “ Key clinical benefits of neuroimaging at 7T,” NeuroImage 168, 477–489 (2018)., Google ScholarCrossref
  55. 55. J. Park, J. Wicki, S. E. Knoblaugh, J. S. Chamberlain, and D. Lee, “ Multi-parametric MRI at 14T for muscular dystrophy mice treated with AAV vector-mediated gene therapy,” PLoS One 10, 1–24 (2015)., Google ScholarCrossref
  56. 56. R. G. Gatto, M. Y. Amin, D. Deyoung, M. Hey, T. H. Mareci, and R. L. Magin, “ Ultra-high field diffusion MRI reveals early axonal pathology in spinal cord of ALS mice,” Transl. Neurodegener. 7, 20 (2018)., Google ScholarCrossref
  57. 57. H. H. Ong, C. D. Webb, M. L. Gruen, A. H. Hasty, J. C. Gore, and E. B. Welch, “ Fat-water MRI of a diet-induced obesity mouse model at 15.2T,” J. Med. Imaging 3, 1–7 (2016)., Google ScholarCrossref
  58. 58. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, “ Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications,” Chem. Rev. 99, 2293–2352 (1999)., Google ScholarCrossref
  59. 59. M. Norek and J. A. Peters, “ MRI contrast agents based on dysprosium or holmium,” Prog. Nucl. Magn. Reson. Spectrosc. 59, 64–82 (2011)., Google ScholarCrossref
  60. 60. P. H. Fries and E. Belorizky, “ Electronic spin relaxation and outer-sphere dynamics of gadolinium-based contrast agents,” in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging ( John Wiley & Sons, Ltd., 2013), Chap. 6, pp. 277–309. Google ScholarCrossref
  61. 61. M. Botta, “ Second coordination sphere water molecules and relaxivity of gadolinium(iii) complexes: Implications for mri contrast agents,” Eur. J. Inorg. Chem. 2000, 399–407.<399::AID-EJIC399>3.0.CO;2-B, Google ScholarCrossref
  62. 62. M. Rogosnitzky and S. Branch, “ Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms,” Biometals 29, 365–376 (2016)., Google ScholarCrossref
  63. 63. J. Ramalho, R. Semelka, M. Ramalho, R. Nunes, M. AlObaidy, and M. Castillo, “ Gadolinium-based contrast agent accumulation and toxicity: An update,” Am. J. Neuroradiol. 37, 1192–1198 (2016)., Google ScholarCrossref
  64. 64. A. D. Sherry, P. Caravan, and R. E. Lenkinski, “ Primer on gadolinium chemistry,” J. Magn. Reson. Imaging 30, 1240–1248 (2009)., Google ScholarCrossref
  65. 65. T. Clough, L. Jiang, K.-L. Wong, and N. J. Long, “ Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents,” Nat. Commun. 10, 1420 (2019)., Google ScholarCrossref
  66. 66. Y. Ogawa, S. Suzuki, K. Naito, M. Saito, E. Kamata, A. Hirose, A. Ono, T. Kaneko, M. Chiba, and Y. Inaba, “ Toxicity study of europium chloride in rats,” J. Environ. Pathol. Toxicol. Oncol. 14, 1–9 (1995), available at Google Scholar
  67. 67. G. Han, Y. Deng, J. Sun, J. Ling, and Z. Shen, “ Research into europium complexes as magnetic resonance imaging contrast agents,” Exp. Ther. Med. 9, 1561–1566 (2015)., Google ScholarCrossref
  68. 68. DOTA: 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetate; DO3A: 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid trisodium salt; DO3A-butrol: [1,4,7-Tris(carboxymethyl)-10-(1-(hydroxymethyl)-2,3-dihydroxypropyl)-1,4,7, 10-tetraazacyclododecanato]; DTPA: diethylenetriaminepentaacetic acid; BOPTA: 2-[2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]-3-phenylmethoxypropanoate; EOB-DTPA: ethoxybenzyl diethylenetriamine pentaacetic acid; DTPA-BMA: 2-[bis[2-[carboxymethyl-[2-(methylamino)-2-oxoethyl]amino]ethyl]amino]acetic acid; DTPA-BMEA:[8,11-bis(carboxymethyl)-14-[2-[(2-methoxyethyl)amno]-2-oxoethyl]-6-oxo-2-oxa-5,8,11,14-tetraazahexadecan-16-oato(3-)]. Google Scholar
  69. 69. I. M. Noebauer-Huhmann, P. Szomolanyi, V. Juras, O. Kraff, M. E. Ladd, and S. Trattnig, “ Gadolinium-based magnetic resonance contrast agents at 7 Tesla,” Invest. Radiol. 45, 554–558 (2010)., Google ScholarCrossref
  70. 70. D. J. Mastarone, V. S. R. Harrison, A. L. Eckermann, G. Parigi, C. Luchinat, and T. J. Meade, “ A modular system for the synthesis of multiplexed magnetic resonance probes,” J. Am. Chem. Soc. 133, 5329–5337 (2011)., Google ScholarCrossref
  71. 71. M. Polasek and P. Caravan, “ Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and noncoordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands,” Inorg. Chem. 52, 4084–4096 (2013)., Google ScholarCrossref
  72. 72. B. Phukan, K. P. Malikidogo, C. S. Bonnet, E. Toth, S. Mondal, and C. Mukherjee, “ A bishydrated, eight-coordinate Gd(III) complex with very fast water exchange: Synthesis, characterization, and phantom MR imaging,” ChemistrySelect 3, 7668–7673 (2018)., Google ScholarCrossref
  73. 73. M. Moula Karimdjy, G. Tallec, P. H. Fries, D. Imbert, and M. Mazzanti, “ Confinement of a tris-aqua Gd(III) complex in silica nanoparticles leads to high stability and high relaxivity and suppresses anion binding,” Chem. Commun. 51, 6836–6838 (2015)., Google ScholarCrossref
  74. 74. L. Leone, L. Guarnieri, J. Martinelli, M. Sisti, A. Penoni, M. Botta, and L. Tei, “ Rigid and compact binuclear bis-hydrated Gd-complexes as high relaxivity MRI agents,” Chem. Eur. J. 27, 11811–11817 (2021)., Google ScholarCrossref
  75. 75. G. Wang and G. Angelovski, “ Highly potent MRI contrast agent displaying outstanding sensitivity to zinc ions,” Angew. Chem. Int. Ed. 60, 5734–5738 (2021)., Google ScholarCrossref
  76. 76. K. H. Thompson and C. Orvig, “ Boon and bane of metal ions in medicine,” Science 300, 936–939 (2003)., Google ScholarCrossref
  77. 77. T. Grobner, “ Gadolinium—A specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?,” Nephrol. Dial. Transplant. 21, 1104–1108 (2006)., Google ScholarCrossref
  78. 78. A. Khawaja, D. Cassidy, J. Al Shakarchi, D. G. McGrogan, N. G. Inston, and R. G. Jones, “ Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines,” Insights Imaging 6, 553–558 (2015)., Google ScholarCrossref
  79. 79. D. Pan, S. D. Caruthers, A. Senpan, A. H. Schmieder, S. A. Wickline, and G. M. Lanza, “ Revisiting an old friend: Manganese-based MRI contrast agents,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 162–173 (2011)., Google ScholarCrossref
  80. 80. M. Kueny-Stotz, A. Garofalo, and D. Felder-Flesch, “ Manganese-enhanced mri contrast agents: From small chelates to nanosized hybrids,” Eur. J. Inorg. Chem. 2012, 1987–2005., Google ScholarCrossref
  81. 81. D. Pan, A. H. Schmieder, S. A. Wickline, and G. M. Lanza, “ Manganese-based MRI contrast agents: Past, present, and future,” Tetrahedron 67, 8431–8444 (2011)., Google ScholarCrossref
  82. 82. B. Phukan, A. B. Patel, and C. Mukherjee, “ A water-soluble and water-coordinated Mn(II) complex: Synthesis, characterization and phantom MRI image study,” Dalton Trans. 44, 12990–12994 (2015)., Google ScholarCrossref
  83. 83. Y.-C. Liu, S.-L. Ma, Q.-L. Guo, J. Zhang, M.-Q. Xu, and W.-X. Zhu, “ Syntheses, crystal structures and properties of two Mn(II) complexes of DTPA-bisamide derivative,” Inorg. Chem. Commun. 8, 574–577 (2005)., Google ScholarCrossref
  84. 84. E. M. Gale, C. M. Jones, I. Ramsay, C. T. Farrar, and P. Caravan, “ A Janus chelator enables biochemically responsive MRI contrast with exceptional dynamic range,” J. Am. Chem. Soc. 138, 15861–15864 (2016)., Google ScholarCrossref
  85. 85. R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson, “ High-spin molecules: [Mn12O12(O2CR)16(H2O)4],” J. Am. Chem. Soc. 115, 1804–1816 (1993)., Google ScholarCrossref
  86. 86. J. E. Mertzman, S. Kar, S. Lofland, T. Fleming, E. Van Keuren, Y. Y. Tong, and S. L. Stoll, “ Surface attached manganese-oxo clusters as potential contrast agents,” Chem. Commun. 2009, 788–790., Google ScholarCrossref
  87. 87. Y. Wang, W. Li, S. Zhou, D. Kong, H. Yang, and L. Wu, “ Mn12 single-molecule magnet aggregates as magnetic resonance imaging contrast agents,” Chem. Commun. 47, 3541–3543 (2011)., Google ScholarCrossref
  88. 88. S. Anbu, S. H. L. Hoffmann, F. Carniato, L. Kenning, T. W. Price, T. J. Prior, M. Botta, A. F. Martins, and G. J. Stasiuk, “ A single-pot template reaction towards a manganese-based T1 contrast agent,” Angew. Chem. Int. Ed. 60, 10736–10744 (2021)., Google ScholarCrossref
  89. 89. Z. Zhou, R. Bai, Z. Wang, H. Bryant, L. Lang, H. Merkle, J. Munasinghe, L. Tang, W. Tang, R. Tian, G. Yu, Y. Ma, G. Niu, J. Gao, and X. Chen, “ An albumin-binding T1-T2 dual-modal MRI contrast agents for improved sensitivity and accuracy in tumor imaging,” Bioconjug. Chem. 30, 1821–1829 (2019)., Google ScholarCrossref
  90. 90. M. R. Longmire, M. Ogawa, P. L. Choyke, and H. Kobayashi, “ Dendrimers as high relaxivity MR contrast agents,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 155–162 (2014)., Google ScholarCrossref
  91. 91. V. J. Venditto, C. A. S. Regino, and M. W. Brechbiel, “ PAMAM dendrimer based macromolecules as improved contrast agents,” Mol. Pharm. 2, 302–311 (2005)., Google ScholarCrossref
  92. 92. W. Zhu, B. Okollie, Z. M. Bhujwalla, and D. Artemov, “ PAMAM dendrimer-based contrast agents for MR imaging of Her-2/neu receptors by a three-step pretargeting approach,” Magn. Reson. Med. 59, 679–685 (2008)., Google ScholarCrossref
  93. 93. J. Zhu, E. M. Gale, I. Atanasova, T. A. Rietz, and P. Caravan, “ Hexameric Mn(II) dendrimer as MRI contrast agent,” Chem. Eur. J. 20, 14507–14513 (2014)., Google ScholarCrossref
  94. 94. R. Shrestha, P. H. Teesdale-Spittle, A. R. Lewis, and P. M. Rendle, “ Gadolinium complexes attached to poly ethoxy ethyl glycinamide (PEE-G) dendrons: Magnetic resonance imaging contrast agents with increased relaxivity,” Chempluschem 85, 1881–1892 (2020)., Google ScholarCrossref
  95. 95. H. Hu, “ Recent advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging,” Front. Chem. 8, 203 (2020)., Google ScholarCrossref
  96. 96. S. Hua, M. B. C. de Matos, J. M. Metselaar, and G. Storm, “ Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization,” Front. Pharmacol. 9, 790 (2018)., Google ScholarCrossref
  97. 97. F. Kiessling, M. E. Mertens, J. Grimm, and T. Lammers, “ Nanoparticles for imaging: Top or flop?,” Radiology 273, 10–28 (2014)., Google ScholarCrossref
  98. 98. J. W. Shreffler, J. E. Pullan, K. M. Dailey, S. Mallik, and A. E. Brooks, “ Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification,” Int. J. Mol. Sci. 20, 6056 (2019)., Google ScholarCrossref
  99. 99. D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht, and S. R. Corrie, “ Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date,” Pharm. Res. 33, 2373–2387 (2016)., Google ScholarCrossref
  100. 100. S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest, P. Stroeve, and M. Mahmoudi, “ Toxicity of nanomaterials,” Chem. Soc. Rev. 41, 2323–2343 (2012)., Google ScholarCrossref
  101. 101. N. Lewinski, V. Colvin, and R. Drezek, “ Cytotoxicity of nanoparticles,” Small 4, 26–49 (2008)., Google ScholarCrossref
  102. 102. D. González-Mancebo, A. I. Becerro, T. C. Rojas, M. L. García-Martín, J. M. de la Fuente, and M. Ocaña, “ HoF3 and DyF3 nanoparticles as contrast agents for high-field magnetic resonance imaging,” Part. Part. Syst. Charact. 34, 1700116 (2017)., Google ScholarCrossref
  103. 103. Q. Ju, Y. Liu, D. Tu, H. Zhu, R. Li, and X. Chen, “ Lanthanide-doped multicolor GdF3 nanocrystals for time-resolved photoluminescent biodetection,” Chem. Eur. J. 17, 8549–8554 (2011)., Google ScholarCrossref
  104. 104. G. Stinnett, N. Taheri, J. Villanova, A. Bohloul, X. Guo, E. P. Esposito, Z. Xiao, D. Stueber, C. Avendano, P. Decuzzi, R. G. Pautler, and V. L. Colvin, “ 2D gadolinium oxide nanoplates as T1 magnetic resonance imaging contrast agents,” Adv. Healthc. Mater. 10, 2001780 (2021)., Google ScholarCrossref
  105. 105. L. Faucher, M. Tremblay, J. Lagueux, Y. Gossuin, and M.-A. Fortin, “ Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI,” ACS Appl. Mater. Interfaces 4, 4506–4515 (2012)., Google ScholarCrossref
  106. 106. J.-L. Bridot, A.-C. Faure, S. Laurent, C. Rivière, C. Billotey, B. Hiba, M. Janier, V. Josserand, J.-L. Coll, L. Vander Elst, R. Muller, S. Roux, P. Perriat, and O. Tillement, “ Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging,” J. Am. Chem. Soc. 129, 5076–5084 (2007)., Google ScholarCrossref
  107. 107. M. Norek, E. Kampert, U. Zeitler, and J. A. Peters, “ Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent,” J. Am. Chem. Soc. 130, 5335–5340 (2008)., Google ScholarCrossref
  108. 108. E. Gómez-Gónzalez, N. O. Núñez, C. Caro, M. L. García-Martín, Y. Fernández-Afonso, J. M. de la Fuente, M. Balcerzyk, and M. Ocaña, “ Dysprosium and holmium vanadate nanoprobes as high-performance contrast agents for high-field magnetic resonance and computed tomography imaging,” Inorg. Chem. 60, 152–160 (2021)., Google ScholarCrossref
  109. 109. E. Gomez-Gonzalez, C. Caro, D. Martinez-Gutierrez, M. L. Garcia-Martin, M. Ocana, and A. I. Becerro, “ Holmium phosphate nanoparticles as negative contrast agents for high-field magnetic resonance imaging: Synthesis, magnetic relaxivity study and in vivo evaluation,” J. Colloid Interface Sci. 587, 131–140 (2021)., Google ScholarCrossref
  110. 110. G. K. Das, N. J. Johnson, J. Cramen, B. Blasiak, P. Latta, B. Tomanek, and F. C. van Veggel, “ NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging,” J. Phys. Chem. Lett. 3, 524–529 (2012)., Google ScholarCrossref
  111. 111. X. Zhang, B. Blasiak, A. J. Marenco, S. Trudel, B. Tomanek, and F. C. van Veggel, “ Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging,” Chem. Mater. 28, 3060–3072 (2016)., Google ScholarCrossref
  112. 112. Y. Feng, Q. Xiao, Y. Zhang, F. Li, Y. Li, C. Li, Q. Wang, L. Shi, and H. Lin, “ Neodymium-doped NaHoF4 nanoparticles as near-infrared luminescent/T2-weighted MR dual-modal imaging agents in vivo,” J. Mater. Chem. B 5, 504–510 (2017)., Google ScholarCrossref
  113. 113. M. W. Rotz, K. S. Culver, G. Parigi, K. W. MacRenaris, C. Luchinat, T. W. Odom, and T. J. Meade, “ High relaxivity Gd (III)–DNA gold nanostars: Investigation of shape effects on proton relaxation,” ACS Nano 9, 3385–3396 (2015)., Google ScholarCrossref
  114. 114. Z. Zhao, Z. Zhou, J. Bao, Z. Wang, J. Hu, X. Chi, K. Ni, R. Wang, X. Chen, Z. Chen et al., “ Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging,” Nat. Commun. 4, 2266 (2013)., Google ScholarCrossref
  115. 115. A. Banerjee, B. Blasiak, E. Pasquier, B. Tomanek, and S. Trudel, “ Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2 contrast agents for high-field MRI,” RSC Adv. 7, 38125–38134 (2017)., Google ScholarCrossref
  116. 116. T. W. Clements, C. Sarsons, C. M. Platnich, A. Banerjee, B. Blasiak, B. Tomanek, K. D. Rinker, and S. Trudel, “ Maltol-functionalized Fe3O4 nanoparticles as T2 magnetic resonance imaging contrast agents,” ChemistrySelect 1, 1602–1606 (2016)., Google ScholarCrossref
  117. 117. D.-H. Kim, H. Zeng, T. C. Ng, and C. S. Brazel, “ T1 and T2 relaxivities of succimer-coated MFe 2 3 + O4 (M = Mn2+, Fe2+ and Co2+) inverse spinel ferrites for potential use as phase-contrast agents in medical MRI,” J. Magn. Magn. Mater. 321, 3899–3904 (2009)., Google ScholarCrossref
  118. 118. Z. Zhou, R. Tian, Z. Wang, Z. Yang, Y. Liu, G. Liu, R. Wang, J. Gao, J. Song, L. Nie, and X. Chen, “ Artificial local magnetic field inhomogeneity enhances T2 relaxivity,” Nat. Commun. 8, 15468 (2017)., Google ScholarCrossref
  119. 119. M. Worden, M. A. Bruckman, M.-H. Kim, N. F. Steinmetz, J. M. Kikkawa, C. LaSpina, and T. Hegmann, “ Aqueous synthesis of polyhedral ‘brick-like’ iron oxide nanoparticles for hyperthermia and T2 MRI contrast enhancement,” J. Mater. Chem. B 3, 6877–6884 (2015)., Google ScholarCrossref
  120. 120. L. Yang, Z. Wang, L. Ma, A. Li, J. Xin, R. Wei, H. Lin, R. Wang, Z. Chen, and J. Gao, “ The roles of morphology on the relaxation rates of magnetic nanoparticles,” ACS Nano 12, 4605–4614 (2018)., Google ScholarCrossref
  121. 121. K. Vamvakidis, M. Katsikini, G. Vourlias, M. Angelakeris, E. C. Paloura, and C. Dendrinou-Samara, “ Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3−xO4) nanoparticles induced by polyol differentiation,” Dalton Trans. 44, 5396–5406 (2015)., Google ScholarCrossref
  122. 122. N. Venkatesha, Y. Qurishi, H. S. Atreya, and C. Srivastava, “ ZnO coated CoFe2O4 nanoparticles for multimodal bio-imaging,” RSC Adv. 6, 18843–18851 (2016)., Google ScholarCrossref
  123. 123. S. M. Hoque, M. Tariq, S. I. Liba, F. Salehin, Z. H. Mahmood, M. N. I. Khan, K. Chattopadhayay, R. Islam, and S. Akhter, “ Thermo-therapeutic applications of chitosan- and PEG-coated NiFe2O4 nanoparticles,” Nanotechnology 27, 285702 (2016)., Google ScholarCrossref
  124. 124. M. Menelaou, K. Georgoula, K. Simeonidis, and C. Dendrinou-Samara, “ Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia,” Dalton Trans. 43, 3626–3636 (2014)., Google ScholarCrossref
  125. 125. S. M. Hoque, M. S. Hossain, S. Choudhury, S. Akhter, and F. Hyder, “ Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications,” Mater. Lett. 162, 60–63 (2016)., Google ScholarCrossref
  126. 126. A. Banerjee, G. E. Bertolesi, C.-C. Ling, B. Blasiak, A. Purchase, O. Calderon, B. Tomanek, and S. Trudel, “ Bifunctional pyrrolidin-2-one terminated manganese oxide nanoparticles for combined magnetic resonance and fluorescence imaging,” ACS Appl. Mater. Interfaces 11, 13069–13078 (2019)., Google ScholarCrossref
  127. 127. A. Banerjee, W. Zeng, M. Taheri, B. Blasiak, B. Tomanek, and S. Trudel, “ Shape-controlled MnO nanoparticles as T1 MRI contrast agents,” AIP Adv. 9, 125031 (2019)., Google ScholarScitation
  128. 128. S. Cheong, P. Ferguson, K. W. Feindel, I. F. Hermans, P. T. Callaghan, C. Meyer, A. Slocombe, C.-H. Su, F.-Y. Cheng, C.-S. Yeh, B. Ingham, M. F. Toney, and R. D. Tilley, “ Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging,” Angew. Chem. Int. Ed. 50, 4206–4209 (2011)., Google ScholarCrossref
  129. 129. A. Dash, B. Blasiak, B. Tomanek, A. Banerjee, S. Trudel, P. Latta, and F. C. J. M. van Veggel, “ Colloidally stable monodisperse Fe nanoparticles as T-2 contrast agents for high-field clinical and preclinical magnetic resonance imaging,” ACS Appl. Nano Mater. 4, 1235–1242 (2021)., Google ScholarCrossref
  130. 130. T. A. Cowger, W. Tang, Z. Zhen, K. Hu, D. E. Rink, T. J. Todd, G. D. Wang, W. Zhang, H. Chen, and J. Xie, “ Casein-coated Fe5C2 nanoparticles with superior r2 relaxivity for liver-specific magnetic resonance imaging,” Theranostics 5, 1225–1232 (2015)., Google ScholarCrossref
  131. 131. G. Huang, J. Hu, H. Zhang, Z. Zhou, X. Chi, and J. Gao, “ Highly magnetic iron carbide nanoparticles as effective T2 contrast agents,” Nanoscale 6, 726–730 (2014)., Google ScholarCrossref
  132. 132. M. Shokouhimehr, E. S. Soehnlen, A. Khitrin, S. Basu, and S. D. Huang, “ Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent,” Inorg. Chem. Commun. 13, 58–61 (2010)., Google ScholarCrossref
  133. 133. S. Biju and T. N. Parac-Vogt, “ Recent advances in lanthanide based nano-architectures as probes for ultra high-field magnetic resonance imaging,” Curr. Med. Chem. 27, 352–361 (2020)., Google ScholarCrossref
  134. 134. J. Y. Park, M. J. Baek, E. S. Choi, S. Woo, J. H. Kim, T. J. Kim, J. C. Jung, K. S. Chae, Y. Chang, and G. H. Lee, “ Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images,” ACS Nano 3, 3663–3669 (2009)., Google ScholarCrossref
  135. 135. J. Yang, P. Shan, Q. Zhao, S. Zhang, L. Li, X. Yang, X. Yu, Z. Lu, Z. Wang, and X. Zhang, “ A design strategy of ultrasmall Gd2O3 nanoparticles for T1 MRI with high performance,” New J. Chem. 45, 7270–7277 (2021)., Google ScholarCrossref
  136. 136. E. N. M. Cheung, R. D. Alvares, W. Oakden, R. Chaudhary, M. L. Hill, J. Pichaandi, G. C. Mo, C. Yip, P. M. Macdonald, and G. J. Stanisz, “ Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography,” Chem. Mater. 22, 4728–4739 (2010)., Google ScholarCrossref
  137. 137. K. Kristinaityte, T. Zalewski, M. Kempka, S. Sakirzanovas, D. Baziulyte-Paulaviciene, S. Jurga, R. Rotomskis, and N. R. Valeviciene, “ Spin-lattice relaxation and diffusion processes in aqueous solutions of gadolinium-based upconverting nanoparticles at different magnetic fields,” Appl. Magn. Reson. 50, 553–561 (2019)., Google ScholarCrossref
  138. 138. R. Lv, P. Yang, F. He, S. Gai, C. Li, Y. Dai, G. Yang, and J. Lin, “ A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light,” ACS Nano 9, 1630–1647 (2015)., Google ScholarCrossref
  139. 139. B.-I. Lee, K. S. Lee, J. H. Lee, I. S. Lee, and S.-H. Byeon, “ Synthesis of colloidal aqueous suspensions of a layered gadolinium hydroxide: A potential MRI contrast agent,” Dalton Trans. 2009, 2490–2495., Google ScholarCrossref
  140. 140. J. Jung, M. A. Kim, J.-H. Cho, S. J. Lee, I. Yang, J. Cho, S. K. Kim, C. Lee, and J. K. Park, “ Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging,” Biomaterials 33, 5865–5874 (2012)., Google ScholarCrossref
  141. 141. Q. Ju, D. Tu, Y. Liu, R. Li, H. Zhu, J. Chen, Z. Chen, M. Huang, and X. Chen, “ Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes,” J. Am. Chem. Soc. 134, 1323–1330 (2011)., Google ScholarCrossref
  142. 142. R. R. Zairov, A. V. Yagodin, M. Khrizanforov, A. G. Martynov, I. R. Nizameev, V. V. Syakaev, A. T. Gubaidullin, T. Kornev, O. Kaman, Y. H. Budnikova, Y. G. Gorbunova, and A. R. Mustafina, “ Unusual magnetic relaxation behavior of hydrophilic colloids based on gadolinium(III) octabutoxyphthalocyaninate,” J. Nanopart. Res. 21, 12 (2019)., Google ScholarCrossref
  143. 143. H.-K. Kim, A. R. Baek, G. Choi, J.-j. Lee, J.-u. Yang, H. Jung, T. Lee, D. Kim, M. Kim, A. E. Cho, G. H. Lee, and Y. Chang, “ Highly brain-permeable apoferritin nanocage with high dysprosium loading capacity as a new T2 contrast agent for ultra-high field magnetic resonance imaging,” Biomaterials 243, 119939 (2020)., Google ScholarCrossref
  144. 144. B. M. Alsaadi, F. J. C. Rossotti, and R. J. P. Williams, “ Electron relaxation rates of lanthanide aquo-cations,” J. Chem. Soc., Dalton Trans. 1980, 2147–2150., Google ScholarCrossref
  145. 145. M. Norek, G. A. Pereira, C. F. Geraldes, A. Denkova, W. Zhou, and J. A. Peters, “ NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles,” J. Phys. Chem. C 111, 10240–10246 (2007)., Google ScholarCrossref
  146. 146. S. Marasini, H. Yue, S. L. Ho, H. Cha, J. A. Park, K.-H. Jung, A. Ghazanfari, M. Y. Ahmad, S. Liu, K.-S. Chae, Y. Chang, and G. H. Lee, “ A novel paramagnetic nanoparticle T2 magnetic resonance imaging contrast agent with high colloidal stability: Polyacrylic acid-coated ultrafine dysprosium oxide nanoparticles,” Bull. Korean Chem. Soc. 41, 829–836 (2020)., Google ScholarCrossref
  147. 147. S. Marasini, H. Yue, S. L. Ho, J. A. Park, S. Kim, K.-H. Jung, H. Cha, S. Liu, T. Tegafaw, M. Y. Ahmad, A. Ghazanfari, K.-S. Chae, Y. Chang, and G. H. Lee, “ Synthesis, characterizations, and 9.4 Tesla T2 MR images of polyacrylic acid-coated terbium(III) and holmium(III) oxide nanoparticles,” Nanomaterials 11, 1355 (2021)., Google ScholarCrossref
  148. 148. X.-Y. Zheng, J. Pellico, A. A. Khrapitchev, N. R. Sibson, and J. J. Davis, “ Dy-dota integrated mesoporous silica nanoparticles as promising ultrahigh field magnetic resonance imaging contrast agents,” Nanoscale 10, 21041–21045 (2018)., Google ScholarCrossref
  149. 149. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “ Applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 36, R167–R181 (2003)., Google ScholarCrossref
  150. 150. N. Lee and T. Hyeon, “ Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents,” Chem. Soc. Rev. 41, 2575–2589 (2012)., Google ScholarCrossref
  151. 151. S. Bedanta and W. Kleemann, “ Supermagnetism,” J. Phys. D: Appl. Phys. 42, 013001 (2008)., Google ScholarCrossref
  152. 152. Here, θ is the angle between the NP's magnetic moment and the axis of preferred magnetization, the easy axis. Google Scholar
  153. 153. Q. L. Vuong, P. Gillis, A. Roch, and Y. Gossuin, “ Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: A theoretical review,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1468 (2017)., Google ScholarCrossref
  154. 154. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “ Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications,” Chem. Rev. 112, 5818–5878 (2012)., Google ScholarCrossref
  155. 155. H. B. Na, I. C. Song, and T. Hyeon, “ Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. 21, 2133–2148 (2009)., Google ScholarCrossref
  156. 156. M. Amiri, M. Salavati-Niasari, and A. Akbari, “ Magnetic nanocarriers: Evolution of spinel ferrites for medical applications,” Adv. Colloid Interface Sci. 265, 29–44 (2019)., Google ScholarCrossref
  157. 157. C. Claire and W. David, “ Superparamagnetic iron oxide nanoparticles for MRI: Contrast media pharmaceutical company R&D perspective,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 411–422 (2013)., Google ScholarCrossref
  158. 158. Y.-X. J. Wang, “ Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application,” Quant. Imaging Med. Surg. 1, 35–40 (2011)., Google ScholarCrossref
  159. 159. J. W. Bulte, “ In vivo MRI cell tracking: Clinical studies,” Am. J. Roentgen. 193, 314–325 (2009)., Google ScholarCrossref
  160. 160. M. R. Bashir, L. Bhatti, D. Marin, and R. C. Nelson, “ Emerging applications for ferumoxytol as a contrast agent in MRI,” J. Magn. Reson. Imaging 41, 884–898 (2015)., Google ScholarCrossref
  161. 161. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “ Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011)., Google ScholarCrossref
  162. 162. Wherein γ is the gyromagnetic ratio of the proton, m s is the saturation magnetization of the NP sample, κ = V / C Fe where V is the volume fraction of the magnetic core, C Fe is the concentration of Fe atoms, and D is the diffusion coefficient of water molecules. Google Scholar
  163. 163. M. Ahmet, C. S. Frampton, and J. Silver, “ A potential iron pharmaceutical composition for the treatment of iron-deficiency anaemia. The crystal and molecular structure of mer-tris-(3-hydroxy-2-methyl-4H-pyran-4-onato)iron(III),” J. Chem. Soc., Dalton Trans. 1159–1163 (1988)., Google ScholarCrossref
  164. 164. D. G. Maxton, R. P. H. Thompson, and R. C. Hider, “ Absorption of iron from ferric hydroxypyranone complexes,” Br. J. Nutr. 71, 203–207 (1994)., Google ScholarCrossref
  165. 165. M. Xie, Z. Wang, Q. Lu, S. Nie, C. J. Butch, Y. Wang, and B. Dai, “ Ultracompact iron oxide nanoparticles with a monolayer coating of succinylated heparin: A new class of renal-clearable and nontoxic T1 agents for high-field MRI,” ACS Appl. Mater. Interfaces 12, 53994–54004 (2020)., Google ScholarCrossref
  166. 166. J. Wang, Y. Jia, Q. Wang, Z. Liang, G. Han, Z. Wang, J. Lee, M. Zhao, F. Li, R. Bai, and D. Ling, “ An ultrahigh-field-tailored T1-T2 dual-mode MRI contrast agent for high-performance vascular imaging,” Adv. Mater. 33, 2004917 (2021)., Google ScholarCrossref
  167. 167. A. Pardo, S. Yanez, Y. Pineiro, R. Iglesias-Rey, A. Al-Modlej, S. Barbosa, J. Rivas, and P. Taboada, “ Cubic anisotropic Co- and Zn-substituted ferrite nanoparticles as multimodal magnetic agents,” ACS Appl. Mater. Interfaces 12, 9017–9031 (2020)., Google ScholarCrossref
  168. 168. C. R. Kalaiselvan, N. D. Thorat, and N. K. Sahu, “ Carboxylated PEG-functionalized MnFe2O4 nanocubes synthesized in a mixed solvent: Morphology, magnetic properties, and biomedical applications,” ACS Omega 6, 5266–5275 (2021)., Google ScholarCrossref
  169. 169. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, and S. M. Hoque, “ Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI,” Nanomaterials 10, 2297 (2020)., Google ScholarCrossref
  170. 170. V. Nica, C. Caro, J. M. Paez-Munoz, M. P. Leal, and M. L. Garcia-Martin, “ Bi-magnetic core-shell CoFe2O4@MnFe2O4 nanoparticles for in vivo theranostics,” Nanomaterials 10, 907 (2020)., Google ScholarCrossref
  171. 171. J. C. Park, J. K. Park, G. T. Lee, D. H. Kim, H. Cha, T. Y. Park, M. Kim, Y. Chang, H. J. Cha, and J. H. Seo, “ Improved magnetic relaxivity via hierarchical surface structure of dysprosium-engineered superparamagnetic iron oxide nanoparticles in ultra-high magnetic field,” J. Ind. Eng. Chem. 77, 408–415 (2019)., Google ScholarCrossref
  172. 172. M. Akhtari, A. Bragin, M. Cohen, R. Moats, F. Brenker, M. D. Lynch, H. V. Vinters, and J. Engel, Jr., “ Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy,” Epilepsia 49, 1419–1430 (2008)., Google ScholarCrossref
  173. 173. M. Akhtari, W. Pope, G. Mathern, R. Moats, A. Frew, and M. Mandelkern, “ Functionalized magnetonanoparticles in visualization of intracranial tumors on MRI,” Mol. Imaging Biol. 15, 299–306 (2013)., Google ScholarCrossref
  174. 174. M. Akhtari, A. Bragin, R. Moats, A. Frew, and M. Mandelkern, “ Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI,” Brain topography 25, 374–388 (2012)., Google ScholarCrossref
  175. 175. G. A. Christoforidis, M. Yang, M. S. Kontzialis, D. G. Larson, A. Abduljalil, M. Basso, W. Yang, A. Ray-Chaudhury, J. Heverhagen, M. V. Knopp et al., “ High resolution ultra high field magnetic resonance imaging of glioma microvascularity and hypoxia using ultra-small particles of iron oxide,” Invest. Radiol. 44, 375 (2009)., Google ScholarCrossref
  176. 176. L. Kubickova, P. Brazda, M. Veverka, O. Kaman, V. Herynek, M. Vosmanska, P. Dvorak, K. Bernasek, and J. Kohout, “ Nanomagnets for ultra-high field MRI: Magnetic properties and transverse relaxivity of silica-coated ϵ-Fe2O3,” J. Magn. Magn. Mater. 480, 154–163 (2019)., Google ScholarCrossref
  177. 177. L. Kubickova, O. Kaman, P. Veverka, V. Herynek, P. Brazda, M. Vosmanska, T. Kmjec, P. Dvorak, D. Kubaniova, and J. Kohout, “ The ϵ-AlxFe2−xO3 nanomagnets as MRI contrast agents: Factors influencing transverse relaxivity,” Colloid Surf. A 589, 124423 (2020)., Google ScholarCrossref
  178. 178. J. Tuček, R. Zbořil, A. Namai, and S.-i. Ohkoshi, “ ϵ-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling,” Chem. Mater. 22, 6483–6505 (2010)., Google ScholarCrossref
  179. 179. O. Perlman, I. S. Weitz, and H. Azhari, “ Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging,” Phys. Med. Biol. 60, 5767–5783 (2015)., Google ScholarCrossref
  180. 180. T.-J. Yoon, H. Lee, H. Shao, and R. Weissleder, “ Highly magnetic core–shell nanoparticles with a unique magnetization mechanism,” Angew. Chem. Int. Ed. 50, 4663–4666 (2011)., Google ScholarCrossref
  181. 181. M. Lei, C. Fu, X. Cheng, B. Fu, N. Wu, Q. Zhang, A. Fu, J. Cheng, J. Gao, and Z. Zhao, “ Activated surface charge-reversal manganese oxide nanocubes with high surface-to-volume ratio for accurate magnetic resonance tumor imaging,” Adv. Funct. Mater. 27, 1700978 (2017)., Google ScholarCrossref
  182. 182. D. Shore, S. L. Pailloux, J. Zhang, T. Gage, D. J. Flannigan, M. Garwood, V. C. Pierre, and B. J. H. Stadler, “ Electrodeposited Fe and Fe-Au nanowires as MRI contrast agents,” Chem. Commun. 52, 12634–12637 (2016)., Google ScholarCrossref
  183. 183. B. Oprea, L. Martinez, E. Roman, A. Espinosa, M. Ruano, D. Llamosa, M. Garcia-Hernandez, C. Ballesteros, and Y. Huttel, “ Growth and characterization of FeB nanoparticles for potential application as magnetic resonance imaging contrast agent,” Mater. Res. Exp. 1, 025008 (2014)., Google ScholarCrossref
  184. 184. S. Kikkawa and Y. Masubuchi, “ Magnetic iron nitrides inspired by historic research on α-Fe16N2,” Prog. Solid State Chem. 51, 19–26 (2017)., Google ScholarCrossref
  185. 185. K. S. Culver, Y. J. Shin, M. W. Rotz, T. J. Meade, M. C. Hersam, and T. W. Odom, “ Shape-dependent relaxivity of nanoparticle-based T1 magnetic resonance imaging contrast agents,” J. Phys. Chem. C 120, 22103–22109 (2016)., Google ScholarCrossref
  186. 186. J. Long, Y. Guari, C. Guerin, and J. Larionova, “ Prussian blue type nanoparticles for biomedical applications,” Dalton Trans. 45, 17581–17587 (2016)., Google ScholarCrossref
  187. 187. Metal Toxicology: Approaches and Methods, edited by R. A. Goyer , C. D. Klaassen , and M. P. Waalkes ( Academic Press, San Diego, CA, 1995). Google ScholarCrossref
  188. 188. M. Shokouhimehr, E. S. Soehnlen, J. Hao, M. Griswold, C. Flask, X. Fan, J. P. Basilion, S. Basu, and S. D. Huang, “ Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents,” J. Mater. Chem. 20, 5251–5259 (2010)., Google ScholarCrossref
  189. 189. Z. Li, Y. Zeng, D. Zhang, M. Wu, L. Wu, A. Huang, H. Yang, X. Liu, and J. Liu, “ Glypican-3 antibody functionalized Prussian blue nanoparticles for targeted MR imaging and photothermal therapy of hepatocellular carcinoma,” J. Mater. Chem. B 2, 3686–3696 (2014)., Google ScholarCrossref
  190. 190. K. M. L. Taylor, W. J. Rieter, and W. Lin, “ Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging,” J. Am. Chem. Soc. 130, 14358–14359 (2008)., Google ScholarCrossref
  191. 191. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, and R. Gref, “ Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9, 172–178 (2010)., Google ScholarCrossref
  192. 192. A. Carne-Sanchez, C. S. Bonnet, I. Imaz, J. Lorenzo, E. Toth, and D. Maspoch, “ Relaxometry studies of a highly stable nanoscale metal-organic framework made of Cu(II), Gd(III), and the macrocyclic DOTP,” J. Am. Chem. Soc. 135, 17711–17714 (2013)., Google ScholarCrossref
  193. 193. A. Banerjee and R. W. Scott, “ Nanocatalysts for Hiyama, Stille, Kumada, and Negishi C-C coupling reactions,” in Nanocatalysis Synthesis and Applications, edited by V. Polshettiwar and T. Asefa ( Wiley Online Library, Hoboken, NJ, 2013), pp. 133–187. Google ScholarCrossref
  194. 194. A. Banerjee and R. W. Scott, “ Au, Ag, and Cu nanostructures,” in Nanocatalysis in Ionic Liquids, edited by M. H. G. Prechtl ( Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 97–123. Google ScholarCrossref
  195. 195. P.-J. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Favre-Reguillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat, and O. Tillement, “ Design of gold nanoparticles for magnetic resonance imaging,” Adv. Funct. Mater. 16, 2330–2339 (2006)., Google ScholarCrossref
  196. 196. H. V.-T. Nguyen, Q. Chen, J. T. Paletta, P. Harvey, Y. Jiang, H. Zhang, M. D. Boska, M. F. Ottaviani, A. Jasanoff, A. Rajca, and J. A. Johnson, “ Nitroxide-based macromolecular contrast agents with unprecedented transverse relaxivity and stability for magnetic resonance imaging of tumors,” ACS Central Sci. 3, 800–811 (2017)., Google ScholarCrossref
  197. 197. P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens, D. P. Cormode, Z. A. Fayad, and W. J. M. Mulder, “ Multifunctional imaging nanoprobes,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 138–150 (2010)., Google ScholarCrossref
  198. 198. W. J. Mulder, A. W. Griffioen, G. J. Strijkers, D. P. Cormode, K. Nicolay, and Z. A. Fayad, “ Magnetic and fluorescent nanoparticles for multimodality imaging,” Nanomedicine 2, 307–324 (2007)., Google ScholarCrossref
  199. 199. Z. Zhou, R. Bai, J. Munasinghe, Z. Shen, L. Nie, and X. Chen, “ T1-T2 dual-modal magnetic resonance imaging: From molecular basis to contrast agents,” ACS Nano 11, 5227–5232 (2017)., Google ScholarCrossref
  200. 200. J-s Choi, J.-H. Lee, T.-H. Shin, H.-T. Song, E. Y. Kim, and J. Cheon, “ Self-confirming ‘AND’ logic nanoparticles for fault-free MRI,” J. Am. Chem. Soc. 132, 11015–11017 (2010)., Google ScholarCrossref
  201. 201. G. D. Wang, H. Chen, W. Tang, D. Lee, and J. Xie, “ Gd and Eu Co-doped nanoscale metal-organic framework as a T-1-T-2 dual-modal contrast agent for magnetic resonance imaging,” Tomography 2, 179–187 (2016)., Google ScholarCrossref
  202. 202. D. Yoo, C. Lee, B. Seo, and Y. Piao, “ One pot synthesis of amine-functionalized and angular-shaped superparamagnetic iron oxide nanoparticles for MR/fluorescence bimodal imaging application,” RSC Adv. 7, 12876–12885 (2017)., Google ScholarCrossref
  203. 203. J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, “ Aggregation-induced emission: Together we shine, united we soar!,” Chem. Rev. 115, 11718–11940 (2015)., Google ScholarCrossref
  204. 204. S. V. Eliseeva and J.-C. G. Bünzli, “ Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39, 189–227 (2010)., Google ScholarCrossref
  205. 205. J. Zhao, H. Hu, W. Liu, and X. Wang, “ Multifunctional NaYF4:Nd/NaDyF4 nanocrystals as a multimodal platform for NIR-II fluorescence and magnetic resonance imaging,” Nanoscale Adv. 3, 463–470 (2021)., Google ScholarCrossref
  206. 206. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “ Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114, 5161–5214 (2014)., Google ScholarCrossref
  207. 207. X. Ma, Y. Zhao, and X.-J. Liang, “ Theranostic nanoparticles engineered for clinic and pharmaceutics,” Acc. Chem. Res. 44, 1114–1122 (2011)., Google ScholarCrossref
  208. 208. S. M. Janib, A. S. Moses, and J. A. MacKay, “ Imaging and drug delivery using theranostic nanoparticles,” Adv. Drug Delivery Rev. 62, 1052–1063 (2010)., Google ScholarCrossref
  209. 209. X. L. Liu, C. T. Ng, P. Chandrasekharan, H. T. Yang, L. Y. Zhao, E. Peng, Y. B. Lv, W. Xiao, J. Fang, and J. B. Yi, “ Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy,” Adv. Healthcare Mater. 5, 2092–2104 (2016)., Google ScholarCrossref
  210. 210. J. Lin, M. Wang, H. Hu, X. Yang, B. Wen, Z. Wang, O. Jacobson, J. Song, G. Zhang, G. Niu, P. Huang, and X. Chen, “ Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection,” Adv. Mater. 28, 3273–3279 (2016)., Google ScholarCrossref
  211. 211. X.-R. Song, X. Wang, S.-X. Yu, J. Cao, S.-H. Li, J. Li, G. Liu, H.-H. Yang, and X. Chen, “ Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy,” Adv. Mater 27, 3285–3291 (2015)., Google ScholarCrossref
  1. © 2022 Author(s). Published under an exclusive license by AIP Publishing.