No Access Submitted: 27 May 2021 Accepted: 16 July 2021 Published Online: 02 August 2021
Journal of Applied Physics 130, 054301 (2021);
more...View Affiliations
View Contributors
  • Raveena Gupta
  • Bonny Dongre
  • Jesús Carrete
  • Chandan Bera
An energetic and dynamical stability analysis of five candidate structures—hexagonal, buckled hexagonal, litharge, inverted litharge, and distorted-NaCl—of the SnS monolayer is performed using density functional theory. The most stable is found to be a highly distorted-NaCl-type structure. The thermoelectric properties of this monolayer are then calculated using the density functional theory and the Boltzmann transport equation. In terms of phonon scattering, there is a sharp contrast between this monolayer and bulk materials, where normal processes are more important. The calculations reveal that the SnS monolayer has enhanced electrical performance as compared to the bulk phase. As a consequence, high figures of merit ZT5 and ZT1.36 are predicted at 600 and 300 K, respectively, for the monolayer, 33 times higher than the ZT of its bulk analog. Therefore, this structure is an interesting candidate for room-temperature thermoelectric applications. A comparison between the fully ab initio results and simpler models based on relaxation times for electrons and phonons highlights the efficiency of computationally inexpensive models. However, ab initio calculations are found to be very important for the prediction of thermal transport properties.
The authors acknowledge DST (India) and OeAD (Austria) for the bilateral project with Nos. INT/AUSTRIA/BMWF/P-02/2018 and IN 03/2018. C.B. and R.G. acknowledge financial support from SERB, DST, India (Project Nos. SERB-EMR/2016/003584).
  1. 1. C. Han, Q. Sun, Z. Li, and S. X. Dou, Adv. Energy Mater. 6, 1600498 (2016)., Google ScholarCrossref
  2. 2. M.-R. Gao, Y.-F. Xu, J. Jiang, and S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013)., Google ScholarCrossref, ISI
  3. 3. A. Banik, S. Roychowdhury, and K. Biswas, Chem. Commun. 54, 6573 (2018)., Google ScholarCrossref
  4. 4. S. Li, X. Li, Z. Ren, and Q. Zhang, J. Mater. Chem. A 6, 2432 (2018)., Google ScholarCrossref
  5. 5. D. Sarkar, T. Ghosh, A. Banik, S. Roychowdhury, D. Sanyal, and K. Biswas, Angew. Chem. 132, 11208 (2020)., Google ScholarCrossref
  6. 6. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature 508, 373 (2014)., Google ScholarCrossref, ISI
  7. 7. Asfandiyar, B. Cai, L.-D. Zhao, and J.-F. Li, J. Materiomics 6, 77 (2020)., Google ScholarCrossref
  8. 8. O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003)., Google ScholarScitation, ISI
  9. 9. R. Gupta, N. Kumar, P. Kaur, and C. Bera, Phys. Chem. Chem. Phys. 22, 18989 (2020)., Google ScholarCrossref
  10. 10. C. Xin, J. Zheng, Y. Su, S. Li, B. Zhang, Y. Feng, and F. Pan, J. Phys. Chem. C 120, 22663 (2016)., Google ScholarCrossref
  11. 11. E. Akhoundi, M. Faghihnasiri, S. Memarzadeh, and A. H. Firouzian, J. Phys. Chem. Solids 126, 43 (2019)., Google ScholarCrossref
  12. 12. D. Q. Khoa, C. V. Nguyen, H. V. Phuc, V. V. Ilyasov, T. V. Vu, N. Q. Cuong, B. D. Hoi, D. V. Lu, E. Feddi, M. El-Yadri, M. Farkous, and N. N. Hieu, Physica B 545, 255 (2018)., Google ScholarCrossref
  13. 13. L. Huang, F. Wu, and J. Li, J. Chem. Phys. 144, 114708 (2016)., Google ScholarScitation, ISI
  14. 14. Y. Zhang, B. Shang, L. Li, and J. Lei, RSC Adv. 7, 30327 (2017)., Google ScholarCrossref
  15. 15. A. Shafique, A. Samad, and Y.-H. Shin, Phys. Chem. Chem. Phys. 19, 20677 (2017)., Google ScholarCrossref
  16. 16. B. Dong, Z. Wang, N. T. Hung, A. R. Oganov, T. Yang, R. Saito, and Z. Zhang, Phys. Rev. Mater. 3, 013405 (2019)., Google ScholarCrossref
  17. 17. R. Gupta, B. Dongre, C. Bera, and J. Carrete, J. Phys. Chem. C 124, 17476 (2020)., Google ScholarCrossref
  18. 18. J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G. K. Madsen, and N. Mingo, Comput. Phys. Commun. 220, 351 (2017)., Google ScholarCrossref
  19. 19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999)., Google ScholarCrossref, ISI
  20. 20. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994)., Google ScholarCrossref, ISI
  21. 21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)., Google ScholarCrossref, ISI
  22. 22. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006)., Google ScholarScitation, ISI
  23. 23. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015)., Google ScholarCrossref, ISI
  24. 24. G. K. H. Madsen, J. Carrete, and M. J. Verstraete, Comput. Phys. Commun. 231, 140 (2018)., Google ScholarCrossref, ISI
  25. 25. J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, and M. Bernardi, “Perturbo: A software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics,” arXiv:2002.02045 [cond-mat.mtrl-sci] (2020). Google Scholar
  26. 26. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008)., Google ScholarCrossref, ISI
  27. 27. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950)., Google ScholarCrossref, ISI
  28. 28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)., Google ScholarCrossref, ISI
  29. 29. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)., Google ScholarCrossref, ISI
  30. 30. I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)., Google ScholarCrossref, ISI
  31. 31. L. Bjerg, B. B. Iversen, and G. K. H. Madsen, Phys. Rev. B 89, 024304 (2014)., Google ScholarCrossref
  32. 32. R. Gupta, B. Kaur, J. Carrete, and C. Bera, J. Appl. Phys. 126, 225105 (2019). , Google ScholarScitation, ISI
  33. 33. G. A. Slack and S. Galginaitis, Phys. Rev. 133, A253 (1964)., Google ScholarCrossref, ISI
  34. 34. C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058 (1964)., Google ScholarCrossref, ISI
  35. 35. D. T. Morelli, J. P. Heremans, and G. A. Slack, Phys. Rev. B 66, 195304 (2002)., Google ScholarCrossref, ISI
  36. 36. G. K. H. Madsen, A. Katre, and C. Bera, Phys. Status Solidi A 213, 802 (2016)., Google ScholarCrossref
  37. 37. W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comput. Phys. Commun. 185, 1747 (2014)., Google ScholarCrossref, ISI
  38. 38. J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, Mater. Res. Lett. 4, 204 (2016)., Google ScholarCrossref, ISI
  39. 39. A. K. Singh and R. G. Hennig, Appl. Phys. Lett. 105, 042103 (2014)., Google ScholarScitation, ISI
  40. 40. N. T. Kaner, Y. Wei, Y. Jiang, W. Li, X. Xu, K. Pang, X. Li, J. Yang, Y. Jiang, G. Zhang, and W. Q. Tian, ACS Omega 5, 17207 (2020)., Google ScholarCrossref
  1. © 2021 Author(s). Published under an exclusive license by AIP Publishing.