No Access Submitted: 25 May 2021 Accepted: 14 August 2021 Published Online: 27 August 2021
Journal of Applied Physics 130, 085705 (2021); https://doi.org/10.1063/5.0057824
more...View Affiliations
View Contributors
  • D. Dyer
  • S. A. Church
  • M. Jain
  • M. J. Kappers
  • M. Frentrup
  • D. J. Wallis
  • R. A. Oliver
  • D. J. Binks
The effects of thermal annealing on the optical properties of Mg-doped cubic zincblende GaN epilayers grown by metalorganic chemical vapor deposition on 3C-SiC/Si (001) substrates are investigated. The photoluminescence spectra show near band edge features and a blue luminescence band that depend on Mg concentration, temperature, and excitation power density. Annealing the sample in a N2 atmosphere causes the intensity of the blue band to increase by a factor of 5. Power dependent photoluminescence measurements show a reduction in the laser excitation density required for saturation of the blue band after annealing, indicating an increase in the recombination lifetime. Time decay measurements confirm this increase, which is attributed to a reduction in the concentration of non-radiative defects after annealing. The results presented here are compared to those reported previously for Mg-doped hexagonal wurtzite GaN.
The authors would like to acknowledge funding from the Engineering and Physics Sciences Research Council (EPSRC) for a studentship (Dyer) and for support under Grant Codes EP/R010250/1 and EP/R01146X/1. D. J. Wallis would like to acknowledge support through EPSRC fellowship No. EP/N01202X/2. The authors would also like to thank Dr. Peter Mitchell for helpful discussions on this work.
  1. 1. M. Auf Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, Phys. Rev. Lett. 116, 027401 (2016). https://doi.org/10.1103/PhysRevLett.116.027401, Google ScholarCrossref, ISI
  2. 2. M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028 (2009). https://doi.org/10.1109/JSTQE.2009.2013476, Google ScholarCrossref, ISI
  3. 3. B. Ding, Mater. Sci. Technol. 34, 1615 (2018). https://doi.org/10.1080/02670836.2018.1461587, Google ScholarCrossref
  4. 4. S. Hammersley, M. J. Kappers, F. C. P. Massabuau, S.-L. Sahonta, P. Dawson, R. A. Oliver, and C. J. Humphreys, Phys. Status Solidi 13, 209 (2016). https://doi.org/10.1002/pssc.201510187, Google ScholarCrossref
  5. 5. D. J. As, Microelectron. J. 40, 204 (2009). https://doi.org/10.1016/j.mejo.2008.07.036, Google ScholarCrossref
  6. 6. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003). https://doi.org/10.1063/1.1600519, Google ScholarScitation, ISI
  7. 7. D. R. Elsaesser, M. T. Durniak, A. S. Bross, and C. Wetzel, J. Appl. Phys. 122, 115703 (2017). https://doi.org/10.1063/1.5003251, Google ScholarScitation, ISI
  8. 8. M. A. Reshchikov, P. Ghimire, and D. O. Demchenko, Phys. Rev. B 97, 205204 (2018). https://doi.org/10.1103/PhysRevB.97.205204, Google ScholarCrossref, ISI
  9. 9. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992). https://doi.org/10.1143/JJAP.31.1258, Google ScholarCrossref, ISI
  10. 10. A. Castiglia, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 98, 213505 (2011). https://doi.org/10.1063/1.3593964, Google ScholarScitation, ISI
  11. 11. A. Klump, M. P. Hoffmann, F. Kaess, J. Tweedie, P. Reddy, R. Kirste, Z. Sitar, and R. Collazo, J. Appl. Phys. 127, 045702 (2020). https://doi.org/10.1063/1.5126004, Google ScholarScitation, ISI
  12. 12. M. Sumiya, K. Fukuda, S. Takashima, S. Ueda, T. Onuma, T. Yamaguchi, T. Honda, and A. Uedono, J. Cryst. Growth 511, 15 (2019). https://doi.org/10.1016/j.jcrysgro.2019.01.021, Google ScholarCrossref
  13. 13. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, Appl. Phys. Lett. 72, 1326 (1998). https://doi.org/10.1063/1.120983, Google ScholarScitation, ISI
  14. 14. S. F. Chichibu, K. Shima, K. Kojima, S. Takashima, M. Edo, K. Ueno, S. Ishibashi, and A. Uedono, Appl. Phys. Lett. 112, 211901 (2018). https://doi.org/10.1063/1.5030645, Google ScholarScitation, ISI
  15. 15. F. Shahedipour and B. W. Wessels, Appl. Phys. Lett. 76, 3011 (2000). https://doi.org/10.1063/1.126562, Google ScholarScitation, ISI
  16. 16. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989). https://doi.org/10.1143/JJAP.28.L2112, Google ScholarCrossref, ISI
  17. 17. D. Xu, H. Yang, S. Li, D. Zhao, H. Ge, and R. Wu, J. Cryst. Growth 209, 203 (2000). https://doi.org/10.1016/S0022-0248(99)00503-5, Google ScholarCrossref
  18. 18. R. E. L. Powell, S. V. Novikov, C. T. Foxon, A. V. Akimov, and A. J. Kent, Phys. Status Solidi C 11, 385 (2014). https://doi.org/10.1002/pssc.201300468, Google ScholarCrossref
  19. 19. D. J. As, T. Simonsmeier, B. Schöttker, T. Frey, D. Schikora, W. Kriegseis, W. Burkhardt, and B. K. Meyer, Appl. Phys. Lett. 73, 1835 (1998). https://doi.org/10.1063/1.122298, Google ScholarScitation, ISI
  20. 20. E. Martinez-Guerrero, B. Daudin, G. Feuillet, H. Mariette, Y. Genuist, S. Fanget, A. Philippe, C. Dubois, C. Bru-Chevallier, G. Guillot, P. Aboughe Nze, T. Chassagne, Y. Monteil, H. Gamez-Cuatzin, and J. Tardy, Mater. Sci. Eng. B 82, 59 (2001). https://doi.org/10.1016/S0921-5107(00)00719-4, Google ScholarCrossref
  21. 21. D. Xu, H. Yang, D. G. Zhao, S. F. Li, and R. H. Wu, J. Appl. Phys. 87, 2064 (2000). https://doi.org/10.1063/1.372139, Google ScholarScitation, ISI
  22. 22. D. J. As, Phys. Status Solidi B 210, 445 (1998). https://doi.org/10.1002/(SICI)1521-3951(199812)210:2<445::AID-PSSB445>3.0.CO;2-P, Google ScholarCrossref
  23. 23. H. Okumura, K. Ohta, G. Feuillet, K. Balakrishnan, S. Chichibu, H. Hamaguchi, P. Hacke, and S. Yoshida, J. Cryst. Growth 178, 113 (1997). https://doi.org/10.1016/S0022-0248(97)00084-5, Google ScholarCrossref
  24. 24. L. Y. Lee, M. Frentrup, M. J. Kappers, R. A. Oliver, C. J. Humphreys, and D. J. Wallis, J. Appl. Phys. 124, 105302 (2018). https://doi.org/10.1063/1.5046801, Google ScholarScitation, ISI
  25. 25. L. Y. Lee, M. Frentrup, P. Vacek, M. J. Kappers, D. J. Wallis, and R. A. Oliver, J. Appl. Phys. 125, 105303 (2019). https://doi.org/10.1063/1.5082846, Google ScholarScitation, ISI
  26. 26. B. Ding, M. Frentrup, S. M. Fairclough, M. J. Kappers, M. Jain, A. Kovács, D. J. Wallis, and R. A. Oliver, J. Appl. Phys. 128, 145703 (2020). https://doi.org/10.1063/5.0015157, Google ScholarScitation, ISI
  27. 27. D. Xu, H. Yang, J. B. Li, D. G. Zhao, S. F. Li, S. M. Zhuang, R. H. Wu, Y. Chen, and G. H. Li, Appl. Phys. Lett. 76, 3025 (2000). https://doi.org/10.1063/1.126567, Google ScholarScitation, ISI
  28. 28. M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005). https://doi.org/10.1063/1.1868059, Google ScholarScitation, ISI
  29. 29. M. A. Reshchikov, J. Appl. Phys. 127, 055701 (2020). https://doi.org/10.1063/1.5140686, Google ScholarScitation, ISI
  30. 30. F. Mireles and S. E. Ulloa, Appl. Phys. Lett. 74, 248 (1999). https://doi.org/10.1063/1.123270, Google ScholarScitation, ISI
  31. 31. H. Wang and A.-B. Chen, J. Appl. Phys. 87, 7859 (2000). https://doi.org/10.1063/1.373467, Google ScholarScitation, ISI
  32. 32. M. Godlewski, T. Suski, I. Grzegory, S. Porowski, J. Bergman, W. Chen, and B. Monemar, Phys. B Condens. Matter 273–274, 39 (1999). https://doi.org/10.1016/S0921-4526(99)00401-9, Google ScholarCrossref
  33. 33. Y.-H. Kwon, S. K. Shee, G. H. Gainer, G. H. Park, S. J. Hwang, and J. J. Song, Appl. Phys. Lett. 76, 840 (2000). https://doi.org/10.1063/1.125602, Google ScholarScitation, ISI
  34. 34. F. Shahedipour and B. W. Wessels, MRS Internet J. Nitride Semicond. Res. 6, 12 (2001). https://doi.org/10.1557/S1092578300000247, Google ScholarCrossref
  35. 35. S. A. Church, B. Ding, P. W. Mitchell, M. J. Kappers, M. Frentrup, G. Kusch, S. M. Fairclough, D. J. Wallis, R. A. Oliver, and D. J. Binks, Appl. Phys. Lett. 117, 032103 (2020). https://doi.org/10.1063/5.0012131, Google ScholarScitation, ISI
  36. 36. R. M. Kemper, P. Veit, C. Mietze, A. Dempewolf, T. Wecker, F. Bertram, J. Christen, J. K. N. Lindner, and D. J. As, Phys. Status Solidi 12, 469 (2015). https://doi.org/10.1002/pssc.201400154, Google ScholarCrossref
  37. 37. D. Dyer, S. A. Church, M. Jain, M. J. Kappers, M. Frentrup, D. J. Wallis, R. A. Oliver, and D. J. Binks, “Dataset - the effect of thermal annealing on the optical properties of Mg-doped zincblende GaN epilayers,” University of Manchester repository (2021). https://doi.org/10.48420/14627817, Google ScholarCrossref
  1. © 2021 Author(s). Published under an exclusive license by AIP Publishing.