No Access Submitted: 21 January 2021 Accepted: 08 April 2021 Published Online: 22 April 2021
Appl. Phys. Lett. 118, 162406 (2021); https://doi.org/10.1063/5.0044993
more...View Affiliations
  • Imec, 3001 Leuven, Belgium
  • a)Author to whom correspondence should be addressed:

    b)

  • Note: This paper is part of the APL Special Collection on Mesoscopic Magnetic Systems: From Fundamental Properties to Devices.

View Contributors
  • José Diogo Costa
  • Bruno Figeys
  • Xiao Sun
  • Nele Van Hoovels
  • Harrie A. C. Tilmans
  • Florin Ciubotaru
  • Christoph Adelmann
We report on the design, fabrication, and characterization of compact tunable yttrium iron garnet (YIG)-based RF resonators based on μm-sized spin-wave cavities. Inductive antennas with both ladder and meander configurations were used as transducers between spin waves and RF signals. The excitation of ferromagnetic resonance and standing spin waves in the YIG cavities led to sharp resonances with quality factors up to 350. The observed spectra were in excellent agreement with a model based on the spin-wave dispersion relations in YIG, showing a high magnetic field tunability of about 29 MHz/mT.
This work received funding from the imec.xpand fund. The authors would like to thank Patrick Vandenameele and Peter Vanbekbergen for their support of the project and Xavier Rottenberg, Kristof Vaesen, and Barend van Liempd for many valuable discussions. J.D.C. acknowledges financial support from the European Union MSCA-IF Neuromag under Grant Agreement No. 793346. F.C.’s and C.A.’s contributions were funded in part by the European Union's Horizon 2020 research and innovation program within the FET-OPEN project CHIRON under Grant Agreement No. 801055.
  1. 1. C. Kittel, Phys. Rev. 73, 155 (1948). https://doi.org/10.1103/PhysRev.73.155, Google ScholarCrossref, ISI
  2. 2. J. F. Dillon, Phys. Rev. 112, 59 (1958). https://doi.org/10.1103/PhysRev.112.59, Google ScholarCrossref
  3. 3. P. S. Carter, IRE Trans. Microwave Theory Tech. 9, 252 (1961). https://doi.org/10.1109/TMTT.1961.1125316, Google ScholarCrossref
  4. 4. P. C. Fletcher and R. O. Bell, J. Appl. Phys. 30, 687 (1959). https://doi.org/10.1063/1.1735216, Google ScholarScitation, ISI
  5. 5. J. Helszajn, YIG Resonators and Filters ( Wiley, New York, 1985). Google Scholar
  6. 6. R. Henry, P. Besser, D. Heinz, and J. Mee, IEEE Trans. Magn. 9, 535 (1973). https://doi.org/10.1109/TMAG.1973.1067610, Google ScholarCrossref
  7. 7. W. S. Ishak and K.-W. Chang, IEEE Trans. Microwave Theory Tech. 34, 1383 (1986). https://doi.org/10.1109/TMTT.1986.1133553, Google ScholarCrossref
  8. 8. W. S. Ishak, Proc. IEEE 76, 171 (1988). https://doi.org/10.1109/5.4393, Google ScholarCrossref
  9. 9. A. K. Ganguly and D. C. Webb, IEEE Trans. Microwave Theory Tech. 23, 998 (1975). https://doi.org/10.1109/TMTT.1975.1128733, Google ScholarCrossref
  10. 10. G. Volluet, IEEE Trans. Magn. 16, 1162 (1980). https://doi.org/10.1109/TMAG.1980.1060847, Google ScholarCrossref
  11. 11. J. D. Adam, R. W. Patterson, and T. W. O'Keeffe, J. Appl. Phys. 49, 1797 (1978). https://doi.org/10.1063/1.324704, Google ScholarScitation, ISI
  12. 12. H. J. Wu, C. V. Smith, J. H. Collins, and J. M. Owens, Electron. Lett. 13, 610 (1977). https://doi.org/10.1049/el:19770439, Google ScholarCrossref
  13. 13. J. H. Collins, J. D. Adam, and Z. M. Bardai, Proc. IEEE 65, 1090 (1977). https://doi.org/10.1109/PROC.1977.10639, Google ScholarCrossref
  14. 14. J. M. Owens, C. V. Smith, E. P. Snapka, and J. H. Collins, in IEEE-MTT-S International Microwave Symposium Digest (1978), p. 440. Google ScholarCrossref
  15. 15. J. P. Castéra and P. Hartemann, Circuits Syst. Signal Process. 4, 181 (1985). https://doi.org/10.1007/BF01600079, Google ScholarCrossref
  16. 16. A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D: Appl. Phys. 43, 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002, Google ScholarCrossref, ISI
  17. 17. S. O. Demokritov and A. N. Slavin, Magnonics: From Fundamentals to Applications ( Springer, Berlin, Heidelberg, 2013). Google ScholarCrossref
  18. 18. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347, Google ScholarCrossref, ISI
  19. 19. D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A. D. Kent, T. Jungwirth, O. Gutfleisch, C. G. Kim, and A. Berger, J. Phys. D: Appl. Phys. 50, 363001 (2017). https://doi.org/10.1088/1361-6463/aa81a1, Google ScholarCrossref
  20. 20. G. Talmelli, T. Devolder, N. Träger, J. Förster, S. Wintz, M. Weigand, H. Stoll, M. Heyns, G. Schütz, I. P. Radu, J. Gräfe, F. Ciubotaru, and C. Adelmann, Sci. Adv. 6, eabb4042 (2020). https://doi.org/10.1126/sciadv.abb4042, Google ScholarCrossref
  21. 21. A. Mahmoud, F. Ciubotaru, F. Vanderveken, A. V. Chumak, S. Hamdioui, C. Adelmann, and S. Cotofana, J. Appl. Phys. 128, 161101 (2020). https://doi.org/10.1063/5.0019328, Google ScholarScitation, ISI
  22. 22. C. Hahn, V. V. Naletov, G. de Loubens, O. Klein, O. d'Allivy Kelly, A. Anane, R. Bernard, E. Jacquet, P. Bortolotti, V. Cros, J. L. Prieto, and M. Muñoz, Appl. Phys. Lett. 104, 152410 (2014). https://doi.org/10.1063/1.4871516, Google ScholarScitation, ISI
  23. 23. N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin, M. Wu, and H. X. Tang, Appl. Phys. Lett. 110, 252401 (2017). https://doi.org/10.1063/1.4986474, Google ScholarScitation, ISI
  24. 24. B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lägel, A. M. Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig, C. Dubs, P. Pirro, and A. V. Chumak, Nano Lett. 20, 4220 (2020). https://doi.org/10.1021/acs.nanolett.0c00657, Google ScholarCrossref
  25. 25. Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro, and A. V. Chumak, Nat. Electron. 3, 765 (2020). https://doi.org/10.1038/s41928-020-00485-6, Google ScholarCrossref
  26. 26. G. Yang, J. Wu, J. Lou, M. Liu, and N. X. Sun, IEEE Trans. Magn. 49, 5063 (2013). https://doi.org/10.1109/TMAG.2013.2253114, Google ScholarCrossref
  27. 27. S. Dai, S. A. Bhave, and R. Wang, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 67, 2454 (2020). https://doi.org/10.1109/TUFFC.2020.3000055, Google ScholarCrossref
  28. 28. C. Dubs, O. Surzhenko, R. Linke, A. Danilewsky, U. Brückner, and J. Dellith, J. Phys. D: Appl. Phys. 50, 204005 (2017). https://doi.org/10.1088/1361-6463/aa6b1c, Google ScholarCrossref
  29. 29. B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013 (1986). https://doi.org/10.1088/0022-3719/19/35/014, Google ScholarCrossref, ISI
  30. 30. V. E. Demidov and S. O. Demokritov, IEEE Trans. Magn. 51, 1 (2015). https://doi.org/10.1109/TMAG.2014.2388196, Google ScholarCrossref
  31. 31. K.-W. Chang and W. S. Ishak, in IEEE MTT-S International Microwave Symposium Digest (1986), p. 473. Google ScholarCrossref
  32. 32. Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, Micromachines 11, 630 (2020). https://doi.org/10.3390/mi11070630, Google ScholarCrossref
  1. © 2021 Author(s). Published under license by AIP Publishing.