No Access Submitted: 17 December 2020 Accepted: 22 February 2021 Published Online: 08 March 2021
Review of Scientific Instruments 92, 033521 (2021); https://doi.org/10.1063/5.0040919
more...View Affiliations
  • 1Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
  • 2First Light Fusion Ltd., 10 Oxford Industrial Park, Yarnton, Kidlington OX5 1QU, United Kingdom
  • b)Author to whom correspondence should be addressed:

    a)Current address: Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

  • Note: Paper published as part of the Special Topic on Proceedings of the 23rd Topical Conference on High-Temperature Plasma Diagnostics.

View Contributors
  • J. D. Hare
  • G. C. Burdiak
  • S. Merlini
  • J. P. Chittenden
  • T. Clayson
  • A. J. Crilly
  • J. W. D. Halliday
  • D. R. Russell
  • R. A. Smith
  • N. Stuart
  • L. G. Suttle
  • S. V. Lebedev
We report on a recently developed laser-probing diagnostic, which allows direct measurements of ray-deflection angles in one axis while retaining imaging capabilities in the other axis. This allows us to measure the spectrum of angular deflections from a laser beam, which passes through a turbulent high-energy-density plasma. This spectrum contains information about the density fluctuations within the plasma, which deflect the probing laser over a range of angles. We create synthetic diagnostics using ray-tracing to compare this new diagnostic with standard shadowgraphy and schlieren imaging approaches, which demonstrates the enhanced sensitivity of this new diagnostic over standard techniques. We present experimental data from turbulence behind a reverse shock in a plasma and demonstrate that this technique can measure angular deflections between 0.06 and 34 mrad, corresponding to a dynamic range of over 500.
This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1 and by the U.S. Department of Energy (DOE) Award Nos. DE-F03-02NA00057, DE-SC-0001063, and DE-SC0020434.
  1. 1. G. W. Sutton, “Effect of turbulent fluctuations in an optically active fluid medium,” AIAA J. 7, 1737–1743 (1969). https://doi.org/10.2514/3.5384, Google ScholarCrossref
  2. 2. E. Mazzucato, “Diffraction of light by random fluctuations of the refractive index of a plasma,” Nuovo Cimento B 42, 257–265 (1966). https://doi.org/10.1007/bf02710908, Google ScholarCrossref
  3. 3. M. F. Kasim, L. Ceurvorst, N. Ratan, J. Sadler, N. Chen, A. Sävert, R. Trines, R. Bingham, P. N. Burrows, M. C. Kaluza, and P. Norreys, “Quantitative shadowgraphy and proton radiography for large intensity modulations,” Phys. Rev. E 95, 023306 (2017). https://doi.org/10.1103/physreve.95.023306, Google ScholarCrossref
  4. 4. T. G. White, M. T. Oliver, P. Mabey, M. Kühn-Kauffeldt, A. F. A. Bott, L. N. K. Döhl, A. R. Bell, R. Bingham, R. Clarke, J. Foster, G. Giacinti, P. Graham, R. Heathcote, M. Koenig, Y. Kuramitsu, D. Q. Lamb, J. Meinecke, T. Michel, F. Miniati, M. Notley, B. Reville, D. Ryu, S. Sarkar, Y. Sakawa, M. P. Selwood, J. Squire, R. H. H. Scott, P. Tzeferacos, N. Woolsey, A. A. Schekochihin, and G. Gregori, “Supersonic plasma turbulence in the laboratory,” Nat. Commun. 10, 1758 (2019). https://doi.org/10.1038/s41467-019-09498-y, Google ScholarCrossref
  5. 5. G. W. Collins, J. C. Valenzuela, C. A. Speliotopoulos, N. Aybar, F. Conti, F. N. Beg, P. Tzeferacos, B. Khiar, A. F. A. Bott, and G. Gregori, “Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials,” Phys. Rev. E 101, 023205 (2020). https://doi.org/10.1103/physreve.101.023205, Google ScholarCrossref
  6. 6. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001). Google ScholarCrossref
  7. 7. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, Bristol, Philadelphia, 1999). Google Scholar
  8. 8. M. L. Goldstein, S. A. Morris, and G. G. Yen, “Problems with fitting to the power-law distribution,” Eur. Phys. J. B 41, 255–258 (2004). https://doi.org/10.1140/epjb/e2004-00316-5, Google ScholarCrossref
  9. 9. E. Hecht, Optics (Pearson, 2012). Google Scholar
  10. 10. J. D. Hare, “High energy density magnetic reconnection experiments in colliding carbon plasma flows,” Ph.D. thesis, Imperial College London, 2017. Google Scholar
  11. 11. A. Siegman, Lasers (University Science Books, 1986). Google Scholar
  12. 12. I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed. (Cambridge University Press, Cambridge, NY, 2002). Google ScholarCrossref
  13. 13. G. F. Swadling, S. V. Lebedev, G. N. Hall, S. Patankar, N. H. Stewart, R. A. Smith, A. J. Harvey-Thompson, G. C. Burdiak, P. de Grouchy, J. Skidmore, L. Suttle, F. Suzuki-Vidal, S. N. Bland, K. H. Kwek, L. Pickworth, M. Bennett, J. D. Hare, W. Rozmus, and J. Yuan, “Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry,” Rev. Sci. Instrum. 85, 11E502 (2014). https://doi.org/10.1063/1.4890564, Google ScholarScitation, ISI
  14. 14. U. Ascoli-Bartoli, “Plasma diagnostics based on refractivity,” in Lectures presented at the Trieste Seminar on Plasma Physics (Springer, 1965), p. 287. Google Scholar
  15. 15. T. B. Kaiser, “Laser ray tracing and power deposition on an unstructured three-dimensional grid,” Phys. Rev. E 61, 895–905 (2000). https://doi.org/10.1103/physreve.61.895, Google ScholarCrossref
  16. 16. I. H. Mitchell, J. M. Bayley, J. P. Chittenden, J. F. Worley, A. E. Dangor, M. G. Haines, and P. Choi, “A high impedance mega-ampere generator for fiber z-pinch experiments,” Rev. Sci. Instrum. 67, 1533–1541 (1996). https://doi.org/10.1063/1.1146884, Google ScholarScitation, ISI
  17. 17. A. J. Harvey-Thompson, S. V. Lebedev, S. N. Bland, J. P. Chittenden, G. N. Hall, A. Marocchino, F. Suzuki-Vidal, S. C. Bott, J. B. A. Palmer, and C. Ning, “Quantitative analysis of plasma ablation using inverse wire array Z pinches,” Phys. Plasmas 16, 022701 (2009). https://doi.org/10.1063/1.3077305, Google ScholarScitation, ISI
  18. 18. S. V. Lebedev, L. Suttle, G. F. Swadling, M. Bennett, S. N. Bland, G. C. Burdiak, D. Burgess, J. P. Chittenden, A. Ciardi, A. Clemens, P. de Grouchy, G. N. Hall, J. D. Hare, N. Kalmoni, N. Niasse, S. Patankar, L. Sheng, R. A. Smith, F. Suzuki-Vidal, J. Yuan, A. Frank, E. G. Blackman, and R. P. Drake, “The formation of reverse shocks in magnetized high energy density supersonic plasma flows,” Phys. Plasmas 21, 056305 (2014). https://doi.org/10.1063/1.4874334, Google ScholarScitation, ISI
  19. 19. J. P. Chittenden and C. A. Jennings, “Development of instabilities in wire-array Z pinches,” Phys. Rev. Lett. 101, 055005 (2008). https://doi.org/10.1103/physrevlett.101.055005, Google ScholarCrossref
  1. © 2021 Author(s). Published under license by AIP Publishing.