No Access Submitted: 16 November 2020 Accepted: 09 February 2021 Published Online: 09 March 2021
Chem. Phys. Rev. 2, 011401 (2021); https://doi.org/10.1063/5.0037749
more...View AffiliationsView Contributors
  • Abhishek Parija
  • Wasif Zaheer
  • Junsang Cho
  • Theodore E. G. Alivio
  • Sirine C. Fakra
  • Mohammed Al-Hashimi
  • David Prendergast
  • Sarbajit Banerjee
The design of earth-abundant electrocatalysts that can facilitate water splitting at low overpotentials, provide high current densities, and enable prolonged operational lifetimes is central to the production of sustainable fuels. The distinctive atomistic and electronic structure characteristics of the edges of MoS2 imbue high reactivity toward the hydrogen evolution reaction. MoS2 is nevertheless characterized by significantly high overpotentials as compared to platinum. Here, we demonstrate that modulation of the electronic structure of MoS2 through interfacial hybridization with MoO3 and alloying of selenium on the anion sublattice allows for systematic lowering of the conduction band edge and raising of the valence band edge, respectively. The former promotes enhanced electrocatalytic activity toward hydrogen evolution, whereas the latter promotes enhanced activity toward the oxygen evolution reaction. Such alloyed heterostructures prepared by sol-gel reactions and hydrothermal selenization expose a high density of edge sites. The alloyed heterostructures exhibit low overpotential, high current density, high turnover frequency, and prolonged operational lifetime. The mechanistic origins of catalytic activity have been established based on electronic structure calculations and x-ray absorption and emission spectroscopy probes of electronic structure, which suggest that interfacial hybridization at the MoO3 interface yields low-lying conduction band states that facilitate hydrogen adsorption. In contrast, shallow Se 4p-derived states give rise to a raised effective valence band maximum, which facilitates adsorption of oxygen intermediates and engenders a low overpotential for the oxygen evolution reaction. The findings illustrate the use of electronic structure modulation through interfacial hybridization and alloying to systematically improve electrocatalytic activity.
This work was supported primarily by the National Science Foundation under DMR 1627197. We also acknowledge support from the Qatar National Research Fund (QNRF) and the National Priorities Research Program (Project No. NPRP 10-0111-170152). We acknowledge the Texas A&M University (TAMU) Supercomputing Facility for computational resources. DFT simulations were performed as part of a User Project with D.P. at The Molecular Foundry (TMF), Lawrence Berkeley National Laboratory. T.M.F. is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231). A.P. and W.Z. acknowledge support from the Advanced Light Source (ALS) doctoral fellowship in residence. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, (Contract No. DE-AC02-05CH11231). Use of the TAMU Materials Characterization Facility is acknowledged. Use of the TAMU Microscopy and Imaging Center is acknowledged. Portions of this research were conducted with the advanced computing resources provided by TAMU High Performance Research Computing (HPRC).
  1. 1. A. B. Jorge, R. Jervis, A. P. Periasamy, M. Qiao, J. Feng, L. N. Tran, and M. M. Titirici, “ 3D carbon materials for efficient oxygen and hydrogen electrocatalysis,” Adv. Energy Mater. 10, 1902494 (2020). https://doi.org/10.1002/aenm.201902494, Google ScholarCrossref
  2. 2. Y. Lei, Y. Wang, Y. Liu, C. Song, Q. Li, D. Wang, and Y. Li, “ Designing atomic active centers for hydrogen evolution electrocatalysts,” Angew. Chem. Int. Ed. 59, 20794–20812 (2020). https://doi.org/10.1002/anie.201914647, Google ScholarCrossref
  3. 3. A. Iulianelli, S. Liguori, J. Wilcox, and A. Basile, “ Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review,” Catal. Rev. 58, 1–35 (2016). https://doi.org/10.1080/01614940.2015.1099882, Google ScholarCrossref
  4. 4. T. E. Graedel, E. Harper, N. T. Nassar, P. Nuss, and B. K. Reck, “ Criticality of metals and metalloids,” Proc. Natl. Acad. Sci. U.S.A. 112, 4257–4262 (2015). https://doi.org/10.1073/pnas.1500415112, Google ScholarCrossref
  5. 5. S. T. Thompson, A. R. Wilson, P. Zelenay, D. J. Myers, K. L. More, K. Neyerlin, and D. Papageorgopoulos, “ ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D,” Solid State Ion 319, 68–76 (2018). https://doi.org/10.1016/j.ssi.2018.01.030, Google ScholarCrossref
  6. 6. H. Mistry, A. S. Varela, S. Kuehl, P. Strasser, and B. R. Cuenya, “ Nanostructured electrocatalysts with tunable activity and selectivity,” Nat. Rev. Mater. 1, 16009 (2016). https://doi.org/10.1038/natrevmats.2016.9, Google ScholarCrossref
  7. 7. J. Bockris, I. Ammar, and A. Huq, “ The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions,” J. Phys. Chem. 61, 879–886 (1957). https://doi.org/10.1021/j150553a008, Google ScholarCrossref
  8. 8. R. Parsons, “ Hydrogen evolution on platinum electrodes. The heats of activation for the component reactions,” Trans. Faraday Soc. 56, 1340–1350 (1960). https://doi.org/10.1039/tf9605601340, Google ScholarCrossref
  9. 9. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, “ Computational high-throughput screening of electrocatalytic materials for hydrogen evolution,” Nat. Mater. 5, 909–913 (2006). https://doi.org/10.1038/nmat1752, Google ScholarCrossref
  10. 10. X. Li, X. Hao, A. Abudula, and G. Guan, “ Nanostructured catalysts for electrochemical water splitting: Current state and prospects,” J. Mater. Chem. A 4, 11973–12000 (2016). https://doi.org/10.1039/C6TA02334G, Google ScholarCrossref
  11. 11. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, and A. Ludwig, “ Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, IrO2 thin film electrodes acidic alkaline electrolytes: A comparative study activity stability. Catal. Today 262, 170–180 (2016). https://doi.org/10.1016/j.cattod.2015.08.014, Google ScholarCrossref
  12. 12. Y.-H. Choi, J. Lee, A. Parija, J. Cho, S. V. Verkhoturov, M. Al-Hashimi, L. Fang, and S. Banerjee, “ An in situ sulfidation approach for the integration of MoS2 nanosheets on carbon fiber paper and the modulation of its electrocatalytic activity by interfacing with nC60,” ACS Catal. 6, 6246–6254 (2016). https://doi.org/10.1021/acscatal.6b01942, Google ScholarCrossref
  13. 13. A. Parija, Y.-H. Choi, Z. Liu, J. L. Andrews, L. R. De Jesus, S. C. Fakra, M. Al-Hashimi, J. D. Batteas, D. Prendergast, and S. Banerjee, “ Mapping catalytically relevant edge electronic states of MoS2,” ACS Cent. Sci. 4, 493–503 (2018). https://doi.org/10.1021/acscentsci.8b00042, Google ScholarCrossref
  14. 14. H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, and F. Abild-Pedersen, “ Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies,” Nat. Mater. 15, 48 (2016). https://doi.org/10.1038/nmat4465, Google ScholarCrossref
  15. 15. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, and Y. Tang, “ Heteronanowires of MoC−Mo2C as efficient electrocatalysts for hydrogen evolution reaction,” Chem. Sci. 7, 3399–3405 (2016). https://doi.org/10.1039/C6SC00077K, Google ScholarCrossref
  16. 16. F. X. Ma, H. B. Wu, B. Y. Xia, C. Y. Xu, and X. W. Lou, “ Hierarchical β–Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production,” Angew. Chem. Int. Ed. 127, 15615–15619 (2015). https://doi.org/10.1002/ange.201508715, Google ScholarCrossref
  17. 17. R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu, and J. Wang, “ Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen–evolution electrocatalyst,” Angew. Chem. Int. Ed. 127, 14936–14940 (2015). https://doi.org/10.1002/ange.201506727, Google ScholarCrossref
  18. 18. H. Park, Y. Zhang, J. P. Scheifers, P. R. Jothi, A. Encinas, and B. P. Fokwa, “ Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution,” J. Am. Chem. Soc. 139, 12915–12918 (2017). https://doi.org/10.1021/jacs.7b07247, Google ScholarCrossref
  19. 19. H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. Fokwa, “ Boron–dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction,” Angew. Chem. 129, 5667–5670 (2017). https://doi.org/10.1002/ange.201611756, Google ScholarCrossref
  20. 20. W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “ Hydrogen–evolution catalysts based on non–noble metal nickel–molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. 51, 6131–6135 (2012). https://doi.org/10.1002/anie.201200699, Google ScholarCrossref
  21. 21. J. Kibsgaard and T. F. Jaramillo, “ Molybdenum phosphosulfide: An active, acid–stable, earth–abundant catalyst for the hydrogen evolution reaction,” Angew. Chem. Int. Ed. 53, 14433–14437 (2014). https://doi.org/10.1002/anie.201408222, Google ScholarCrossref
  22. 22. P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim, and X. Wang, “ Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction,” Energy Environ. Sci. 7, 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F, Google ScholarCrossref
  23. 23. A. Abraham, L. Wang, C. D. Quilty, D. M. Lutz, A. H. McCarthy, C. R. Tang, M. R. Dunkin, L. M. Housel, E. S. Takeuchi, and A. C. Marschilok, “ Defect control in the synthesis of 2D MoS2 nanosheets: Polysulfide trapping in composite sulfur cathodes for Li–S batteries,” ChemSusChem 13, 1517–1528 (2020). https://doi.org/10.1002/cssc.201903028, Google ScholarCrossref
  24. 24. Q. Wu, A. Abraham, L. Wang, X. Tong, E. S. Takeuchi, K. J. Takeuchi, and A. C. Marschilok, “ Electrodeposition of MoSx: Tunable fabrication of sulfur equivalent electrodes for high capacity or high power,” J. Electrochem. Soc. 167, 050513 (2020). https://doi.org/10.1149/1945-7111/ab717d, Google ScholarCrossref
  25. 25. Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, and Y. Xie, “ Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions,” Angew. Chem. Int. Ed. 127, 11383–11387 (2015). https://doi.org/10.1002/ange.201505320, Google ScholarCrossref
  26. 26. H. Wang, Z. Li, G. Li, F. Peng, and H. Yu, “ Co3S4/NCNTs: A catalyst for oxygen evolution reaction,” Catal. Today 245, 74–78 (2015). https://doi.org/10.1016/j.cattod.2014.06.006, Google ScholarCrossref
  27. 27. T. Y. Ma, S. Dai, M. Jaroniec, and S. Z. Qiao, “ Metal−organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes,” J. Am. Chem. Soc. 136, 13925–13931 (2014). https://doi.org/10.1021/ja5082553, Google ScholarCrossref
  28. 28. R. D. Smith, M. S. Prévot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, and C. P. Berlinguette, “ Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis,” Science 340, 60–63 (2013). https://doi.org/10.1126/science.1233638, Google ScholarCrossref
  29. 29. C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, and S. Wang, “ Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction,” Electrochim. Acta 174, 297–301 (2015). https://doi.org/10.1016/j.electacta.2015.05.186, Google ScholarCrossref
  30. 30. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, and X. Zou, “ High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting,” J. Am. Chem. Soc. 137, 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186, Google ScholarCrossref
  31. 31. C. G. Morales-Guio, L.-A. Stern, and X. Hu, “ Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution,” Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/C3CS60468C, Google ScholarCrossref
  32. 32. S. A. Razek, M. R. Popeil, L. Wangoh, J. Rana, N. Suwandaratne, J. L. Andrews, D. F. Watson, S. Banerjee, and L. F. Piper, “ Designing catalysts for water splitting based on electronic structure considerations,” Electron. Struct. 2, 023001 (2020). https://doi.org/10.1088/2516-1075/ab7d86, Google ScholarCrossref
  33. 33. Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C.-R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.-X. Li, P. Strasser, Y. Wu, and Y. Li, “ Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis,” Nat. Catal. 2, 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2, Google ScholarCrossref
  34. 34. K. Cheng, H. Wang, J. Bang, D. West, J. Zhao, and S. Zhang, “ Carrier dynamics and transfer across the CdS/MoS2 interface upon optical excitation,” J. Phys. Chem. Lett. 11, 6544–6550 (2020). https://doi.org/10.1021/acs.jpclett.0c01188, Google ScholarCrossref
  35. 35. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “ Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483, Google ScholarCrossref
  36. 36. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “ Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution,” J. Am. Chem. Soc. 127, 5308–5309 (2005). https://doi.org/10.1021/ja0504690, Google ScholarCrossref
  37. 37. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “ MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 133, 7296–7299 (2011). https://doi.org/10.1021/ja201269b, Google ScholarCrossref
  38. 38. X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, and S. Yang, “ Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction,” Chem. Mater. 26, 2344–2353 (2014). https://doi.org/10.1021/cm500347r, Google ScholarCrossref
  39. 39. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, and X. Wang, “ Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction,” Nanoscale 5, 7768–7771 (2013). https://doi.org/10.1039/c3nr02994h, Google ScholarCrossref
  40. 40. Y. Guo, X. Zhang, X. Zhang, and T. You, “ Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution,” J. Mater. Chem. A 3, 15927–15934 (2015). https://doi.org/10.1039/C5TA03766B, Google ScholarCrossref
  41. 41. J. Cho, N. S. Suwandaratne, S. Razek, Y.-H. Choi, L. F. J. Piper, D. F. Watson, and S. Banerjee, “ Elucidating the mechanistic origins of photocatalytic hydrogen evolution mediated by MoS2/CdS quantum-dot heterostructures,” ACS Appl. Mater. Interfaces 12, 43728–43740 (2020). https://doi.org/10.1021/acsami.0c12583, Google ScholarCrossref
  42. 42. W. Zheng, J. Lin, W. Feng, K. Xiao, Y. Qiu, X. Chen, G. Liu, W. Cao, S. T. Pantelides, and W. Zhou, “ Patterned growth of P‐type MoS2 atomic layers using sol–gel as precursor,” Adv. Funct. Mater. 26, 6371–6379 (2016). https://doi.org/10.1002/adfm.201602494, Google ScholarCrossref
  43. 43. S. Mouri, W. Zhang, D. Kozawa, Y. Miyauchi, G. Eda, and K. Matsuda, “ Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers,” Nanoscale 9, 6674–6679 (2017). https://doi.org/10.1039/C7NR01598D, Google ScholarCrossref
  44. 44. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, and P. Wang, “ Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures,” ACS Nano 10, 3852–3858 (2016). https://doi.org/10.1021/acsnano.6b00980, Google ScholarCrossref
  45. 45. M.-H. Chiu, M.-Y. Li, W. Zhang, W.-T. Hsu, W.-H. Chang, M. Terrones, H. Terrones, and L.-J. Li, “ Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking,” ACS Nano 8, 9649–9656 (2014). https://doi.org/10.1021/nn504229z, Google ScholarCrossref
  46. 46. Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, and Y. Li, “ Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction,” ACS Catal. 5, 2213–2219 (2015). https://doi.org/10.1021/cs501970w, Google ScholarCrossref
  47. 47. V. Kiran, D. Mukherjee, R. N. Jenjeti, and S. Sampath, “ Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1−x)Se2x,” Nanoscale 6, 12856–12863 (2014). https://doi.org/10.1039/C4NR03716B, Google ScholarCrossref
  48. 48. X. Ren, Q. Ma, H. Fan, L. Pang, Y. Zhang, Y. Yao, X. Ren, and S. Liu, “ A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction,” Chem. Commun. 51, 15997–16000 (2015). https://doi.org/10.1039/C5CC06847A, Google ScholarCrossref
  49. 49. P. Cao, J. Peng, S. Liu, Y. Cui, Y. Hu, B. Chen, J. Li, and M. Zhai, “ Tuning the composition and structure of amorphous molybdenum sulfide/carbon black nanocomposites by radiation technique for highly efficient hydrogen evolution,” Sci. Rep. 7, 16048 (2017). https://doi.org/10.1038/s41598-017-16015-y, Google ScholarCrossref
  50. 50. H. Li, K. Yu, Z. Tang, H. Fu, and Z. Zhu, “ High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: From theory to experiment,” Phys. Chem. Chem. Phys. 18, 14074–14085 (2016). https://doi.org/10.1039/C6CP02027E, Google ScholarCrossref
  51. 51. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “ Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,” Nanoscale 4, 6637–6641 (2012). https://doi.org/10.1039/c2nr31833d, Google ScholarCrossref
  52. 52. S. H. Song, B. H. Kim, D. H. Choe, J. Kim, D. C. Kim, D. J. Lee, J. M. Kim, K. J. Chang, and S. Jeon, “ Bandgap widening of phase quilted, 2D MoS2 by Oxidative Intercalation,” Adv. Mater. 27, 3152–3158 (2015). https://doi.org/10.1002/adma.201500649, Google ScholarCrossref
  53. 53. X. Li and H. Zhu, “ Two-dimensional MoS2: Properties, preparation, and applications,” J. Materiomics 1, 33–44 (2015). https://doi.org/10.1016/j.jmat.2015.03.003, Google ScholarCrossref
  54. 54. Y.-H. Choi, J. Cho, A. M. Lunsford, M. Al-Hashimi, L. Fang, and S. Banerjee, “ Mapping the electrocatalytic activity of MoS2 across its amorphous to crystalline transition,” J. Mater. Chem. A 5, 5129–5141 (2017). https://doi.org/10.1039/C6TA10316B, Google ScholarCrossref
  55. 55. Y. Gao, L. Mi, W. Wei, S. Cui, Z. Zheng, H. Hou, and W. Chen, “ Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance,” ACS Appl. Mater. Interfaces 7, 4311–4319 (2015). https://doi.org/10.1021/am508747m, Google ScholarCrossref
  56. 56. Y. Guo, J. Tang, H. Qian, Z. Wang, and Y. Yamauchi, “ One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts,” Chem. Mater. 29, 5566–5573 (2017). https://doi.org/10.1021/acs.chemmater.7b00867, Google ScholarCrossref
  57. 57. F. Jalilehvand, “ Sulfur: Not a ‘silent’ element any more,” Chem. Soc. Rev. 35, 1256–1268 (2006). https://doi.org/10.1039/B417595F, Google ScholarCrossref
  58. 58. K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “ Electronic properties of MoS2/MoOx interfaces: Implications in tunnel field effect transistors and hole contacts,” Sci. Rep. 6, 33562 (2016). Google ScholarCrossref
  59. 59. R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant, and M. Kumar, “ Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature,” Adv. Mater. Interfaces 5, 1800071 (2018). https://doi.org/10.1002/admi.201800071, Google ScholarCrossref
  60. 60. P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei, and X. Zhao, “ In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell,” J. Mater. Chem. A 2, 2742–2756 (2014). https://doi.org/10.1039/c3ta13579a, Google ScholarCrossref
  61. 61. Z. Zhang and J. T. Yates, “ Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112, 5520–5551 (2012). https://doi.org/10.1021/cr3000626, Google ScholarCrossref
  62. 62. C. J. Patridge, L. Whittaker, B. Ravel, and S. Banerjee, “ Elucidating the influence of local structure perturbations on the metal–insulator transitions of V1–xMoxO2 nanowires: Mechanistic insights from an x-ray absorption spectroscopy study,” J. Phys. Chem. C 116, 3728–3736 (2012). https://doi.org/10.1021/jp2091335, Google ScholarCrossref
  63. 63. V. Itthibenchapong, C. Ratanatawanate, M. Oura, and K. Faungnawakij, “ A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol,” Catal. Commun. 68, 31–35 (2015). https://doi.org/10.1016/j.catcom.2015.04.024, Google ScholarCrossref
  64. 64. L.-J. Tian, Y. Peng, D.-L. Chen, J.-Y. Ma, H.-Q. Yu, and W.-W. Li, “ Spectral insights into the transformation and distribution of CdSe quantum dots in microorganisms during food-chain transport,” Sci. Rep. 7, 4370 (2017). https://doi.org/10.1038/s41598-017-04694-6, Google ScholarCrossref
  65. 65. D. Gao, B. Xia, C. Zhu, Y. Du, P. Xi, D. Xue, J. Ding, and J. Wang, “ Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution,” J. Mater. Chem. A 6, 510–515 (2018). https://doi.org/10.1039/C7TA09982G, Google ScholarCrossref
  66. 66. M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin, and J. S. Lee, “ Efficient hydrogen evolution reaction catalysis in alkaline media by all–in–one MoS2 with multifunctional active sites,” Adv. Mater. 30, 1707105 (2018). https://doi.org/10.1002/adma.201707105, Google ScholarCrossref
  67. 67. M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, and D. L. DuBois, “ A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production,” Science 333, 863–866 (2011). https://doi.org/10.1126/science.1205864, Google ScholarCrossref
  68. 68. J. Wang, H-x Zhong, Z-l Wang, F-l Meng, and X-b Zhang, “ Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting,” ACS Nano 10, 2342–2348 (2016). https://doi.org/10.1021/acsnano.5b07126, Google ScholarCrossref
  69. 69. H. Hua, S. Liu, Z. Chen, R. Bao, Y. Shi, L. Hou, G. Pang, K. N. Hui, X. Zhang, and C. Yuan, “ Self-sacrifice template formation of hollow hetero-Ni7S6/Co3S4 nanoboxes with intriguing pseudo-capacitance for high-performance electrochemical capacitors,” Sci. Rep. 6, 1–11 (2016). Google ScholarCrossref
  70. 70. M. Shao, Q. Chang, J.-P. Dodelet, and R. Chenitz, “ Recent advances in electrocatalysts for oxygen reduction reaction,” Chem. Rev. 116, 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462, Google ScholarCrossref
  71. 71. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, “ Design Principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries,” Nat. Chem. 3, 546–550 (2011). https://doi.org/10.1038/nchem.1069, Google ScholarCrossref
  72. 72. F. Lima, J. Zhang, M. Shao, K. Sasaki, M. Vukmirovic, E. Ticianelli, and R. Adzic, “ Catalytic activity− d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions,” J. Phys. Chem. C 111, 404–410 (2007). https://doi.org/10.1021/jp065181r, Google ScholarCrossref
  73. 73. J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B. I. Yakobson, and J. Lou, “ Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes,” ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079, Google ScholarCrossref
  74. 74. J. Cho, A. Sheng, N. Suwandaratne, L. Wangoh, J. L. Andrews, P. Zhang, L. F. Piper, D. F. Watson, and S. Banerjee, “ The middle road less taken: Electronic-structure-inspired design of hybrid photocatalytic platforms for solar fuel generation,” Acc. Chem. Res. 52, 645–655 (2019). https://doi.org/10.1021/acs.accounts.8b00378, Google ScholarCrossref
  75. 75. Y. Liu, J. Wu, K. P. Hackenberg, J. Zhang, Y. M. Wang, Y. Yang, K. Keyshar, J. Gu, T. Ogitsu, and R. Vajtai, “ Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution,” Nat. Energy 2, 17127 (2017). https://doi.org/10.1038/nenergy.2017.127, Google ScholarCrossref
  76. 76. A. Akbashev, L. Zhang, J. Mefford, J. Park, B. Butz, H. Luftman, W. Chueh, and A. Vojvodic, “ Activation of ultrathin SrTiO3 with subsurface SrRuO3 for the oxygen evolution reaction,” Energy Environ. Sci. 11, 1762–1769 (2018). https://doi.org/10.1039/C8EE00210J, Google ScholarCrossref
  77. 77. J. L. Andrews, J. Cho, L. Wangoh, N. Suwandaratne, A. Sheng, S. Chauhan, K. Nieto, A. Mohr, K. J. Kadassery, M. R. Popeil, P. K. Thakur, M. Sfeir, D. C. Lacy, T.-L. Lee, P. Zhang, D. F. Watson, L. F. J. Piper, and S. Banerjee, “ Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide,” J. Am. Chem. Soc. 140, 17163–17174 (2018). https://doi.org/10.1021/jacs.8b09924, Google ScholarCrossref
  78. 78. A. T. Swesi, J. Masud, W. P. Liyanage, S. Umapathi, E. Bohannan, J. Medvedeva, and M. Nath, “ Textured NiSe2 film: Bifunctional electrocatalyst for full water splitting at remarkably low overpotential with high energy efficiency,” Sci. Rep. 7, 2401 (2017). https://doi.org/10.1038/s41598-017-02285-z, Google ScholarCrossref
  79. 79. K. E. Pelcher, C. C. Milleville, L. Wangoh, J. Cho, A. Sheng, S. Chauhan, M. Y. Sfeir, L. F. Piper, D. F. Watson, and S. Banerjee, “ Programming interfacial energetic offsets and charge transfer in β-Pb0. 33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states,” J. Phys. Chem. C 120, 28992–29001 (2016). https://doi.org/10.1021/acs.jpcc.6b10863, Google ScholarCrossref
  80. 80. M. Cui, X. Ding, X. Huang, Z. Shen, T.-L. Lee, F. E. Oropeza, J. P. Hofmann, E. J. M. Hensen, and K. H. L. Zhang, “ Ni3+-induced hole states enhance the oxygen evolution reaction activity of NixCo3–xO4 electrocatalysts,” Chem. Mater. 31, 7618–7625 (2019). https://doi.org/10.1021/acs.chemmater.9b02453, Google ScholarCrossref
  81. 81. T. Lim, M. Sung, and J. Kim, “ Oxygen evolution reaction at microporous Pt layers: Differentiated electrochemical activity between acidic and basic media,” Sci. Rep. 7, 1–6 (2017). https://doi.org/10.1039/C8EE00210J, Google ScholarCrossref
  82. 82. L. Giordano, B. Han, M. Risch, W. T. Hong, R. R. Rao, K. A. Stoerzinger, and Y. Shao-Horn, “ pH dependence of OER activity of oxides: Current and future perspectives,” Catal. Today 262, 2–10 (2016). https://doi.org/10.1016/j.cattod.2015.10.006, Google ScholarCrossref
  83. 83. T. Cheng, L. Wang, B. V. Merinov, and W. A. Goddard III, “ Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH,” J. Am. Chem. Soc. 140, 7787–7790 (2018). https://doi.org/10.1021/jacs.8b04006, Google ScholarCrossref
  84. 84. T. M. McEvoy and K. J. Stevenson, “ Electrochemical quartz crystal microbalance study of the electrodeposition mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution,” Anal. Chim. Acta 496, 39–51 (2003). https://doi.org/10.1016/j.aca.2002.10.001, Google ScholarCrossref
  85. 85. B. Ravel and M. Newville, “ ATHENA, ARTEMIS, and HEPHAESTUS: Data analysis for x-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron. Rad. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719, Google ScholarCrossref
  86. 86. W. Kohn and L. J. Sham, “ Self-consistent equations including exchange and correlation effects,” Phys. Rev 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133, Google ScholarCrossref
  87. 87. G. Kresse and J. Hafner, “ Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/PhysRevB.47.558, Google ScholarCrossref
  88. 88. G. Kresse and J. Furthmüller, “ Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0, Google ScholarCrossref
  89. 89. J. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865, Google ScholarCrossref
  90. 90. G. Kresse and D. Joubert, “ From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758, Google ScholarCrossref
  91. 91. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, “ Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505, Google ScholarCrossref
  92. 92. S. Grimme, “ Accurate description of van der Waals complexes by density functional theory including empirical corrections,” J. Comput. Chem. 25, 1463–1473 (2004). https://doi.org/10.1002/jcc.20078, Google ScholarCrossref
  1. © 2021 Author(s). Published under license by AIP Publishing.