ABSTRACT
A low-cost device for registration-free quantitative phase microscopy (QPM) based on the transport of intensity equation of cells in continuous flow is presented. The method uses acoustic focusing to align cells into a single plane where all cells move at a constant speed. The acoustic focusing plane is tilted with respect to the microscope’s focal plane in order to obtain cell images at multiple focal positions. As the cells are displaced at constant speed, phase maps can be generated without the need to segment and register individual objects. The proposed inclined geometry allows for the acquisition of a vertical stack without the need for any moving part, and it enables a cost-effective and robust implementation of QPM. The suitability of the solution for biological imaging is tested on blood samples, demonstrating the ability to recover the phase map of single red blood cells flowing through the microchip.
ACKNOWLEDGMENTS
The authors would like to thank Dr. Stéphane Barland (UCA Nice) and Dr. Marco Sartore (ElbaTech SRL) for fruitful discussions. J.M.M. acknowledges the funding for international mobility France–Italy provided by the Université Franco Italienne (UFI, Project No. C2-1031) and the Mexican Council of Science and Technology (CONACyT) scholarship (No. 471712). P.G.J. gratefully acknowledges fellowship funding by the UK EPSRC (No. EP/L025035/1). This work has also been supported by the French government through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with Reference No. ANR-15-IDEX-01.
- 1. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998). https://doi.org/10.1364/ol.23.000817, Google ScholarCrossref
- 2. Y. Park, C. Depeursinge, and G. Popescu, Nat. Photonics 12, 578 (2018). https://doi.org/10.1038/s41566-018-0253-x, Google ScholarCrossref
- 3. C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, Cell. Physiol. Biochem. 17, 193–200 (2006). https://doi.org/10.1159/000094124, Google ScholarCrossref
- 4. W.-J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T.-C. Poon, and P. P. Banerjee, Appl. Opt. 57, A229–A234 (2018). https://doi.org/10.1364/AO.57.00A229, Google ScholarCrossref
- 5. S. Zhang, J. Cheng, and Y.-X. Qin, PLoS ONE 7, e38343 (2012). https://doi.org/10.1371/journal.pone.0038343, Google ScholarCrossref
- 6. I. Vasilenko, V. Metelin, M. Nasyrov, V. Belyakov, A. Kuznetsov, and E. Sukhenko, Quant. Phase Imaging 9336, 2078661 (2015). https://doi.org/10.1117/12.2078661, Google ScholarCrossref
- 7. C. Martinez Torres, B. Laperrousaz, L. Berguiga, E. Boyer Provera, J. Elezgaray, F. E. Nicolini, V. Maguer-Satta, A. Arneodo, and F. Argoul, Quant. Phase Imaging II 9718, 97182C (2016). https://doi.org/10.1117/12.2211314, Google ScholarCrossref
- 8. T. Yamauchi, H. Iwai, and Y. Yamashita, Opt. Express 19, 5536 (2011). https://doi.org/10.1364/oe.19.005536, Google ScholarCrossref
- 9. J. Jung, L. E. Matemba, K. Lee, P. E. Kazyoba, J. Yoon, J. J. Massaga, K. Kim, D.-J. Kim, Y. Park, and Y. Park, “Characterizations of erythrocytes from individuals with sickle cell diseases and Malaria infection in Tanzania using a portable quantitative phase imaging unit,” in International Conference on Photonics and Imaging in Biology and Medicine (Optical Society of America, 2017), p. W3A.115. Google Scholar
- 10. M. T. Rinehart, H. S. Park, K. A. Walzer, J.-T. A. Chi, and A. Wax, Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep24461, Google ScholarCrossref
- 11. Y. Ma, S. Guo, Y. Pan, R. Fan, Z. J. Smith, S. Lane, and K. Chu, J. Biophotonics 12, e201900011 (2019). https://doi.org/10.1002/jbio.201900011, Google ScholarCrossref
- 12. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, Opt. Lett. 35, 447–449 (2010). https://doi.org/10.1364/OL.35.000447, Google ScholarCrossref
- 13. P. K. Poola, V. Jayaraman, K. Chaithanya, D. Rao, and R. John, OSA Contin. 1, 1215 (2018). https://doi.org/10.1364/OSAC.1.001215, Google ScholarCrossref
- 14. C. Zuo, Q. Chen, W. Qu, and A. Asundi, Opt. Express 21, 24060–24075 (2013). https://doi.org/10.1364/OE.21.024060, Google ScholarCrossref
- 15. K. Lee and Y. Park, Opt. Lett. 39, 3630 (2014). https://doi.org/10.1364/ol.39.003630, Google ScholarCrossref
- 16. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, Opt. Express 18, 22817 (2010). https://doi.org/10.1364/OE.18.022817, Google ScholarCrossref
- 17. W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, and S. Wang, Appl. Phys. Lett. 109, 071112 (2016). https://doi.org/10.1063/1.4961383, Google ScholarScitation, ISI
- 18. R. Zmijan, U. S. Jonnalagadda, D. Carugo, Y. Kochi, E. Lemm, G. Packham, M. Hill, and P. Glynne-Jones, RSC Adv. 5, 83206 (2015). https://doi.org/10.1039/C5RA19497K, Google ScholarCrossref
- 19. O. Jakobsson, M. Antfolk, and T. Laurell, Anal. Chem. 86, 6111 (2014), pMID: 24863098. https://doi.org/10.1021/ac5012602, Google ScholarCrossref
- 20. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. d’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, Light Sci. Appl. 6, e16241 (2016). https://doi.org/10.1038/lsa.2016.241, Google ScholarCrossref
- 21. P. Glynne-Jones, R. J. Boltryk, and M. Hill, Lab Chip 12, 1417 (2012). https://doi.org/10.1039/C2LC21257A, Google ScholarCrossref
- 22. C. Willert, B. Stasicki, J. Klinner, and S. Moessner, Meas. Sci. Technol. 21, 075402 (2010). https://doi.org/10.1088/0957-0233/21/7/075402, Google ScholarCrossref
- 23. S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, and the scikit-image contributors, PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453, Google ScholarCrossref
- 24. T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, Laser Phys. 28, 125601 (2018). https://doi.org/10.1088/1555-6611/aae036, Google ScholarCrossref
- 25. S. S. Gorthi and E. Schonbrun, Opt. Lett. 37, 707 (2012). https://doi.org/10.1364/ol.37.000707, Google ScholarCrossref
- 26. E. Bostan, E. Froustey, M. Nilchian, D. Sage, and M. Unser, “Variational phase imaging using the transport-of-intensity equation,” IEEE Trans. Image Process. 25(2), 807–817 (2016). https://doi.org/10.1109/TIP.2015.2509249, Google ScholarCrossref
- 27. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Nature 585, 357 (2020). https://doi.org/10.1038/s41586-020-2649-2, Google ScholarCrossref
- 28. B. Hammarström, M. Vassalli, and P. Glynne-Jones, J. Appl. Phycol. 32, 339 (2019). https://doi.org/10.1007/s10811-019-01907-5, Google ScholarCrossref
- 29. N. C. Pégard and J. W. Fleischer, J. Biomed. Opt. 18, 040503 (2013). https://doi.org/10.1117/1.jbo.18.4.040503, Google ScholarCrossref
- 30. V. K. Jagannadh, M. D. Mackenzie, P. Pal, A. K. Kar, and S. S. Gorthi, Opt. Express 24, 22144 (2016). https://doi.org/10.1364/oe.24.022144, Google ScholarCrossref
- 31. N. O. Loewke, S. Pai, C. Cordeiro, D. Black, B. L. King, C. H. Contag, B. Chen, T. M. Baer, and O. Solgaard, IEEE. Trans. Med. Imaging 37, 929 (2018). https://doi.org/10.1109/tmi.2017.2775604, Google ScholarCrossref
- 32. N. R. Patel, V. K. Chhaniwal, B. Javidi, and A. Anand, Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015). Google Scholar
- 33. V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, Adv. Intel. Syst. 2, 1900153 (2020). https://doi.org/10.1002/aisy.201900153, Google ScholarCrossref
- 34. T. Go, J. H. Kim, H. Byeon, and S. J. Lee, J. Biophotonics 11, e201800101 (2018). https://doi.org/10.1002/jbio.201800101, Google ScholarCrossref
- 35. F. A. M. Ramírez, E. M. Rodriguez, C. A. O. Castelblanco, and M. Camacho, in Optical Methods for Inspection, Characterization, and Imaging of Biomaterials III, edited by P. Ferraro, M. Ritsch-Marte, S. Grilli, and C. K. Hitzenberger (SPIE, 2017). Google Scholar
- 36. B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, Comb. Chem. High Throughput Screen. 17, 80 (2014). https://doi.org/10.2174/13862073113166660062, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.