No Access Submitted: 20 October 2020 Accepted: 11 December 2020 Published Online: 06 January 2021
Physics of Fluids 33, 014102 (2021);
more...View Affiliations
View Contributors
  • J. Dagaut
  • M. E. Negretti
  • G. Balarac
  • C. Brun
We present results from a highly resolved large-eddy simulation of a freely developing Blasius profile over a concave boundary in a large spanwise domain. Due to the large initial Reynolds and Görtler numbers (Reθ,0 = 1175, Gθ,0 = 75), we observe the onset of two dominant wavelengths: the first dominating in the linear/transition region, λ1, and the second dominating in the turbulent region, λ2. Extending previous linear stability analysis (LSA) to higher Görtler numbers and non-dimensional wavenumbers, both dominant wavelengths of the Görtler instability correspond to predictions of LSA, the latter comparable to laminar theory by replacing the kinematic viscosity with the turbulent viscosity in the definition of the Görtler number. The predicted spatial modes compare well with the computed profiles for both λ1 and λ2. The skin friction coefficient Cf is found heterogeneous in the spanwise direction according to the emerging wavelengths λ1 and λ2 of the Görtler instability. We report a smooth increase in Cf from the theoretical predictions of a laminar boundary layer to those for a turbulent boundary layer over a flat plate. The values only slightly overshoot these predictions in the domain of existence of the second dominant wavelength λ2, very different from that reported at lower Reynolds numbers.
This work has been supported by a grant from Labex OSUG (Investissements d’avenir—ANR10 LABX56). V. Moureau and G. Lartigue (CORIA) and the SUCCESS scientific group are acknowledged for providing the YALES2 code. This work was granted access to the HPC resources of IDRIS under Allocation No. 2019-A0060107567 made by GENCI.
Special thanks goes to E. J. Hopfinger for fruitful discussions.
  1. 1. H. Görtler, “Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden,” Nachr. Ges. Wiss. Göttingen 2, 1–26 (1940). Google Scholar
  2. 2. A. M. O. Smith, “On the growth of Taylor–Görtler vortices along highly concave walls,” Q. Appl. Math. 13, 233–262 (1955)., Google ScholarCrossref
  3. 3. J. M. Floryan and W. S. Saric, “Stability of Gortler vortices in boundary layers,” AIAA J. 20, 316–324 (1982)., Google ScholarCrossref
  4. 4. P. Hall, “The linear development of Görtler vortices in growing boundary layers,” J. Fluid Mech. 130, 41–58 (1983)., Google ScholarCrossref
  5. 5. W. S. Saric, “Görtler vortices,” Annu. Rev. Fluid Mech. 26, 379–409 (1994)., Google ScholarCrossref, ISI
  6. 6. S. Navarro-Martinez and O. R. Tutty, “Numerical simulation of Görtler vortices in hypersonic compression ramps,” Comput. Fluids 34, 225–247 (2005)., Google ScholarCrossref
  7. 7. A. Ducoin, M. S. Shadloo, and S. Roy, “Direct numerical simulation of flow instabilities over Savonius style wind turbine blades,” Renewable Energy 105, 374–385 (2017)., Google ScholarCrossref
  8. 8. E. J. Hopfinger, A. Kurniawan, W. H. Graf, and U. Lemmin, “Sediment erosion by Görtler vortices: The scour-hole problem,” J. Fluid Mech. 520, 327–342 (2004)., Google ScholarCrossref
  9. 9. I. Albayrak, E. J. Hopfinger, and U. Lemmin, “Near-field flow structure of a confined wall jet on flat and concave rough walls,” J. Fluid Mech. 606, 27–49 (2008)., Google ScholarCrossref
  10. 10. C. Brun, “Large-Eddy simulation of a katabatic jet along a convexly curved slope: 2. Evidence of Görtler vortices,” J. Geophys. Res. Atmos. 122, 5190–5210, (2017)., Google ScholarCrossref
  11. 11. I. Tani, “Production of longitudinal vortices in the boundary layer along a concave wall,” J. Geophys. Res. 67, 3075–3080,, Google ScholarCrossref
  12. 12. J. D. Swearingen and R. F. Blackwelder, “The growth and breakdown of streamwise vortices in the presence of a wall,” J. Fluid Mech. 182, 255–290 (1987)., Google ScholarCrossref
  13. 13. T. Tandiono, S. H. Winoto, and D. A. Shah, “Spanwise velocity component in nonlinear region of Görtler vortices,” Phys. Fluids 25, 104104 (2013)., Google ScholarScitation, ISI
  14. 14. L.-U. Schrader, L. Brandt, and T. A. Zaki, “Receptivity, instability and breakdown of Görtler flow,” J. Fluid Mech. 682, 362–396 (2011)., Google ScholarCrossref
  15. 15. V. Malatesta, L. F. Souza, and J. T. C. Liu, “Influence of Goertler vortices spanwise wavelength on heat transfer rates,” Comput. Fluids Therm. Sci. 5, 389–400 (2013)., Google ScholarCrossref
  16. 16. L. F. Souza, “On the odd and even secondary instabilities of Görtler vortices,” Theor. Comput. Fluid Dyn. 31, 405–425 (2017)., Google ScholarCrossref
  17. 17. I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smits, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues,” Phys. Fluids 22, 065103 (2010)., Google ScholarScitation, ISI
  18. 18. P. Schlatter, Q. Li, G. Brethouwer, A. Johansson, and D. Henningson, “Structure of a turbulent boundary layer studied by DNS,” in Direct and Large-Eddy Simulation VIII (Springer, 2011), pp. 9–14. Google ScholarCrossref
  19. 19. P. Schlatter and R. Örlü, “Inflow length and tripping effects in turbulent boundary layers,” J. Phys.: Conf. Ser. 318, 022018 (2011)., Google ScholarCrossref
  20. 20. M. Méndez, M. S. Shadloo, A. Hadjadj, and A. Ducoin, “Boundary layer transition over a concave surface caused by centrifugal instabilities,” Comput. Fluids 171, 135–153 (2018)., Google ScholarCrossref
  21. 21. D. S. Park and P. Huerre, “Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate,” J. Fluid Mech. 283, 249–272 (1995)., Google ScholarCrossref
  22. 22. M. P. Schultz and R. J. Volino, “Effects of concave curvature on boundary layer transition under high freestream turbulence conditions,” J. Fluids Eng. 125, 18–27 (2003)., Google ScholarCrossref
  23. 23. R. Örlü and P. Schlatter, Inflow Length and Tripping Effects in Turbulent Boundary Layers (IOP Publishing, 2011), p. 022018. Google Scholar
  24. 24. V. Moureau, P. Domingo, and L. Vervisch, “Design of a massively parallel CFD code for complex geometries,” C. R. Mécanique 339, 141–148 (2011)., Google ScholarCrossref
  25. 25. A. J. Chorin, “Numerical solution of the Navier–Stokes equations,” Math. Comput. 22, 745–762 (1968)., Google ScholarCrossref
  26. 26. M. Malandain, N. Maheu, and V. Moureau, “Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines,” J. Comput. Phys. 238, 32–47 (2013)., Google ScholarCrossref
  27. 27. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids 3, 1760–1765 (1991)., Google ScholarScitation, ISI
  28. 28. Y. Zang, R. L. Street, and J. R. Koseff, “A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows,” Phys. Fluids A 5, 3186–3196 (1993)., Google ScholarScitation, ISI
  29. 29. I. Orlanski, “A simple boundary condition for unbounded hyperbolic flows,” J. Comput. Phys. 21, 251–269 (1976)., Google ScholarCrossref, ISI
  30. 30. S. B. Pope, Turbulent Flows (Cambridge University Press, 2001). Google Scholar
  31. 31. P. Benard, G. Balarac, V. Moureau, C. Dobrzynski, G. Lartigue, and Y. D’Angelo, “Mesh adaptation for large-eddy simulations in complex geometries,” Int. J. Numer. Methods Fluids 81, 719–740 (2016)., Google ScholarCrossref
  32. 32. P. Petitjeans, “Étude expérimentale des instabilités de couches limites sur des parois concaves: Instabilité de Görtler,” Ph.D. thesis, 1992. Google Scholar
  33. 33. F. H. Clauser, “The turbulent boundary layer,” Adv. Appl. Mech. 4, 1–51 (1956)., Google ScholarCrossref
  34. 34. A. Smits, N. Matheson, and P. Joubert, “Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients,” J. Ship Res. 27, 147–157 (1983). Google ScholarCrossref
  1. © 2021 Author(s). Published under license by AIP Publishing.