No Access Submitted: 26 June 2020 Accepted: 02 October 2020 Published Online: 09 November 2020
Appl. Phys. Lett. 117, 193501 (2020); https://doi.org/10.1063/5.0019949
more...View Affiliations
View Contributors
  • Giuseppe Modica
  • Rui Zhu
  • Robert Horvath
  • Gregoire Beaudoin
  • Isabelle Sagnes
  • Rémy Braive
Optoelectronic oscillators have dominated the scene of microwave oscillators in the last few years thanks to their great performances regarding frequency stability and phase noise. However, miniaturization of such devices is an up-to-date challenge. Recently, devices based on a phonon–photon interaction have gathered a lot of interest thanks to their extreme compactness and working frequency directly in the GHz. In this frame, a still-missing element to obtain long-term frequency stability performances is an on-chip delay within the feedback loop. Here, we experimentally show filtering and slow propagation of 2 GHz acoustic waves on a Gallium Arsenide membrane heterogeneously integrated on a silicon wafer. By engineering the dispersion of an acoustical waveguide, we evidence a group velocity below 1000 m/s for the mode able to propagate. Thus, an integrated delay implementation is at reach for potential improvement of opto-acoustic devices such as optomechanical oscillators or wireless applications.
G.M. acknowledges support from the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 722923 (OMT). This work was supported by the French RENATECH network, the European Union's Horizon 2020 research innovation program under Grant Agreement No. 732894 (FET Proactive HOT), and the Agence Nationale de la Recherche as part of the “ASTRID” program (CRONOS, No. ANR-19-ASTR-00-22-01).
  1. 1. E. Rubiola, Phase Noise and Frequency Stability in Oscillators ( Cambridge University Press, 2009). Google Scholar
  2. 2. Z. Fan, J. Su, T. Zhang, N. Yang, and Q. Qiu, “ High-precision thermal-insensitive strain sensor based on optoelectronic oscillator,” Opt. Express 25(22), 27037–27050 (2017). https://doi.org/10.1364/OE.25.027037, Google ScholarCrossref
  3. 3. M. Li, W. Li, J. Yao, and J. Azana, “ Femtometer-resolution wavelength interrogation of a phase-shifted fiber Bragg grating sensor using an optoelectronic oscillator,” in Advanced Photonics Congress ( Optical Society of America, 2012). Google ScholarCrossref
  4. 4. O. Xu, J. Zhang, H. Deng, and J. Yao, “ Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017). https://doi.org/10.1109/LPT.2016.2647261, Google ScholarCrossref
  5. 5. J. Lee, S. Park, D. H. Seo, S. H. Yim, S. Yoon, and D. Cho, “ Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer,” Opt. Express 24(19), 21910–21920 (2016). https://doi.org/10.1364/OE.24.021910, Google ScholarCrossref
  6. 6. A. Liu, J. Dai, and K. Xu, “ Stable and low-spurs optoelectronic oscillators: A review,” Appl. Sci. 8(12), 2623 (2018). https://doi.org/10.3390/app8122623, Google ScholarCrossref
  7. 7. X. S. Yao and L. Maleki, “ Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996). https://doi.org/10.1364/JOSAB.13.001725, Google ScholarCrossref
  8. 8. X. S. Yao and L. Maleki, “ Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21(7), 483–485 (1996). https://doi.org/10.1364/OL.21.000483, Google ScholarCrossref
  9. 9. M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “ Improving thermal stability of opto-electronic oscillators,” IEEE Microwave Mag. 7(4), 38–47 (2006). https://doi.org/10.1109/MMW.2006.1663988, Google ScholarCrossref
  10. 10. D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “ Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition ( IEEE, 2002), pp. 580–583. Google ScholarCrossref
  11. 11. A. Hati, C. W. Nelson, J. Taylor, N. Ashby, and D. A. Howe, “ Cancellation of vibration-induced phase noise in optical fibers,” IEEE Photonics Technol. Lett. 20(22), 1842–1844 (2008). https://doi.org/10.1109/LPT.2008.2004697, Google ScholarCrossref
  12. 12. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “ Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014). https://doi.org/10.1103/RevModPhys.86.1391, Google ScholarCrossref
  13. 13. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “ Optomechanical crystals,” Nature 462(7269), 78–82 (2009). https://doi.org/10.1038/nature08524, Google ScholarCrossref
  14. 14. V. Tsvirkun, A. Surrente, F. Raineri, G. Beaudoin, R. Raj, I. Sagnes, I. Robert-Philip, and R. Braive, “ Integrated III-V photonic crystal–Si waveguide platform with tailored optomechanical coupling,” Sci. Rep. 5, 16526 (2015). https://doi.org/10.1038/srep16526, Google ScholarCrossref
  15. 15. I. Ghorbel, F. Swiadek, R. Zhu, D. Dolfi, G. Lehoucq, A. Martin, G. Moille, L. Morvan, R. Braive, S. Combrié et al., “ Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric III/V semiconductor,” APL Photonics 4(11), 116103 (2019). https://doi.org/10.1063/1.5121774, Google ScholarScitation, ISI
  16. 16. M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher, “ Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nat. Phys. 16(1), 69–74 (2020). https://doi.org/10.1038/s41567-019-0673-7, Google ScholarCrossref
  17. 17. K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “ Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346 (2016). https://doi.org/10.1038/nphoton.2016.46, Google ScholarCrossref
  18. 18. H. Li, S. A. Tadesse, Q. Liu, and M. Li, “ Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz,” Optica 2(9), 826–831 (2015). https://doi.org/10.1364/OPTICA.2.000826, Google ScholarCrossref
  19. 19. K. Huang and M. Hossein-Zadeh, “ Injection locking of optomechanical oscillators via acoustic waves,” Opt. Express 26(7), 8275–8288 (2018). https://doi.org/10.1364/OE.26.008275, Google ScholarCrossref
  20. 20. Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, and A. H. Safavi-Naeini, “ Piezoelectric transduction of a wavelength-scale mechanical waveguide,” Phys. Rev. Appl. 13(2), 024069 (2020). https://doi.org/10.1103/PhysRevApplied.13.024069, Google ScholarCrossref
  21. 21. A. Siddiqui, R. H. Olsson, and M. Eichenfield, “ Lamb wave focusing transducer for efficient coupling to wavelength-scale structures in thin piezoelectric films,” J. Microelectromech. Syst. 27(6), 1054–1070 (2018). https://doi.org/10.1109/JMEMS.2018.2865855, Google ScholarCrossref
  22. 22. L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang et al., “ Phononic band structure engineering for high-q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019). https://doi.org/10.1103/PhysRevApplied.12.014022, Google ScholarCrossref
  23. 23. A. H. Safavi-Naeini and O. Painter, “ Proposal for an optomechanical traveling wave phonon–photon translator,” New J. Phys. 13(1), 013017 (2011). https://doi.org/10.1088/1367-2630/13/1/013017, Google ScholarCrossref
  24. 24. K. M. Lakin, G. R. Kline, and K. T. McCarron, “ Development of miniature filters for wireless applications,” IEEE Trans. Microwave Theory Tech. 43(12), 2933–2939 (1995). https://doi.org/10.1109/22.475658, Google ScholarCrossref
  25. 25. R. H. Olsson III and I. El-Kady, “ Microfabricated phononic crystal devices and applications,” Meas. Sci. Technol. 20(1), 012002 (2009). https://doi.org/10.1088/0957-0233/20/1/012002, Google ScholarCrossref
  26. 26. T. J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. Van Laere et al., “ Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides,” J. Appl. Phys. 107(6), 063103 (2010). https://doi.org/10.1063/1.3319667, Google ScholarScitation, ISI
  27. 27. R. Braive, L. Le Gratiet, S. Guilet, G. Patriarche, A. Lemaître, A. Beveratos, I. Robert-Philip, and I. Sagnes, “ Inductively coupled plasma etching of GaAs suspended photonic crystal cavities,” J. Vac. Sci. Technol., B 27(4), 1909–1914 (2009). https://doi.org/10.1116/1.3154519, Google ScholarCrossref, ISI
  28. 28. S. Mohammadi, A. A. Eftekhar, A. Khelif, H. Moubchir, R. Westafer, W. D. Hunt, and A. Adibi, “ Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates,” Electron. Lett. 43(16), 898–899 (2007). https://doi.org/10.1049/el:20071159, Google ScholarCrossref
  29. 29. D. Oser, F. Mazeas, X. L. Roux, D. Pérez-Galacho, O. Alibart, S. Tanzilli, L. Labonté, D. Marris-Morini, L. Vivien, É. Cassan et al., “ Coherency-broken Bragg filters: Overcoming on-chip rejection limitations,” Laser Photonics Rev. 13(8), 1800226 (2019). https://doi.org/10.1002/lpor.201800226, Google ScholarCrossref
  30. 30. M. Clement, L. Vergara, J. Sangrador, E. Iborra, and A. Sanz-Hervás, “ Saw characteristics of AIN films sputtered on silicon substrates,” Ultrasonics 42(1–9), 403–407 (2004). https://doi.org/10.1016/j.ultras.2004.01.034, Google ScholarCrossref
  1. © 2020 Author(s). Published under license by AIP Publishing.