ABSTRACT
An MgAl2O4 barrier with an ordered spinel structure for magnetic tunnel junctions (MTJs) was prepared via a two-step process by repeating Mg–Al alloy deposition and post-oxidation to tune its oxidation state. The obtained Fe/MgAl2O4/Fe(001) epitaxial MTJs showed a large tunnel magnetoresistance (TMR) ratio (>150%) in a wide resistance × area (RA) range; this behavior was in contrast with that of MTJs prepared through a conventional one-step process, which exhibited a large TMR ratio only in a narrow RA range. The bias voltage at which the TMR is halved from the zero-bias value increased up to 1.20 and 1.47 V for the positive and negative bias polarities, respectively, when optimizing the two-step process. The nanostructure analysis revealed an improved oxygen distribution on the atomic scale in the MgAl2O4 barrier with the two-step process, providing a coherent barrier suitable for various practical applications.
We are grateful to T. Scheike for his technical support with the sputtering process and K. Masuda and Y. Miura for their valuable comments. P.-H.C. acknowledges the National Institute for Materials Science for the provision of the NIMS Graduate Research Assistantship.
REFERENCES
- 1. H. J. M. Swagten, Handbook of Magnetic Materials, Vol. 17 ( Elsevier, 2007), pp. 1–121. https://doi.org/10.1016/S1567-2719(07)17001-3, Google ScholarCrossref
- 2. W. Butler, X.-G. Zhang, T. Schulthess, and J. MacLaren, Phys. Rev. B 63, 054416 (2001). https://doi.org/10.1103/PhysRevB.63.054416, Google ScholarCrossref, ISI
- 3. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403(R) (2001). https://doi.org/10.1103/PhysRevB.63.220403, Google ScholarCrossref
- 4. S. Yuasa and D. D. Djayaprawira, J. Phys. D 40, R337 (2007). https://doi.org/10.1088/0022-3727/40/21/R01, Google ScholarCrossref, ISI
- 5. H. Sukegawa, H. Xiu, T. Ohkubo, T. Furubayashi, T. Niizeki, W. Wang, S. Kasai, S. Mitani, K. Inomata, and K. Hono, Appl. Phys. Lett. 96, 212505 (2010). https://doi.org/10.1063/1.3441409, Google ScholarScitation, ISI
- 6. N. Matsuo, N. Doko, T. Takada, H. Saito, and S. Yuasa, Phys. Rev. Appl. 6, 034011 (2016). https://doi.org/10.1103/PhysRevApplied.6.034011, Google ScholarCrossref
- 7. N. S. Krishna, N. Doko, N. Matsuo, H. Saito, and S. Yuasa, J. Phys. D 50, 435001 (2017). https://doi.org/10.1088/1361-6463/aa861b, Google ScholarCrossref
- 8. H. Sukegawa, Y. Kato, M. Belmoubarik, P.-H. Cheng, T. Daibou, N. Shimomura, Y. Kamiguchi, J. Ito, H. Yoda, T. Ohkubo, S. Mitani, and K. Hono, Appl. Phys. Lett. 110, 122404 (2017). https://doi.org/10.1063/1.4977946, Google ScholarScitation, ISI
- 9. M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, I. El Baggari, M. Fanciulli, I. Fina, E. Fortunato, C. Frontera, S. Fujita, V. Garcia, S. T. B. Goennenwein, C.-G. Granqvist, J. Grollier, R. Gross, A. Hagfeldt, G. Herranz, K. Hono, E. Houwman, M. Huijben, A. Kalaboukhov, D. J. Keeble, G. Koster, L. F. Kourkoutis, J. Levy, M. Lira-Cantu, J. L. MacManus-Driscoll, J. Mannhart, R. Martins, S. Menzel, T. Mikolajick, M. Napari, M. D. Nguyen, G. Niklasson, C. Paillard, S. Panigrahi, G. Rijnders, F. Sánchez, P. Sanchis, S. Sanna, D. G. Schlom, U. Schroeder, K. M. Shen, A. Siemon, M. Spreitzer, H. Sukegawa, R. Tamayo, J. van den Brink, N. Pryds, and F. M. Granozio, Appl. Surf. Sci. 482, 1 (2019). https://doi.org/10.1016/j.apsusc.2019.03.312, Google ScholarCrossref
- 10. M. Belmoubarik, H. Sukegawa, T. Ohkubo, S. Mitani, and K. Hono, Appl. Phys. Lett. 108, 132404 (2016). https://doi.org/10.1063/1.4945049, Google ScholarScitation, ISI
- 11. H. Sukegawa, Y. Miura, S. Muramoto, S. Mitani, T. Niizeki, T. Ohkubo, K. Abe, M. Shirai, K. Inomata, and K. Hono, Phys. Rev. B 86, 184401 (2012). https://doi.org/10.1103/PhysRevB.86.184401, Google ScholarCrossref, ISI
- 12. Ikhtiar, H. Sukegawa, X. Xu, M. Belmoubarik, H. Lee, S. Kasai, and K. Hono, Appl. Phys. Lett. 112, 022408 (2018). https://doi.org/10.1063/1.5013076, Google ScholarScitation, ISI
- 13. R. Shan, H. Sukegawa, W. Wang, M. Kodzuka, T. Furubayashi, T. Ohkubo, S. Mitani, K. Inomata, and K. Hono, Phys. Rev. Lett. 102, 246601 (2009). https://doi.org/10.1103/PhysRevLett.102.246601, Google ScholarCrossref, ISI
- 14. T. Scheike, H. Sukegawa, T. Furubayashi, Z. Wen, K. Inomata, T. Ohkubo, K. Hono, and S. Mitani, Appl. Phys. Lett. 105, 242407 (2014). https://doi.org/10.1063/1.4904716, Google ScholarScitation, ISI
- 15. T. Scheike, H. Sukegawa, K. Inomata, T. Ohkubo, K. Hono, and S. Mitani, Appl. Phys. Express 9, 053004 (2016). https://doi.org/10.7567/APEX.9.053004, Google ScholarCrossref
- 16. K. Masuda and Y. Miura, Phys. Rev. B 96, 054428 (2017). https://doi.org/10.1103/PhysRevB.96.054428, Google ScholarCrossref
- 17. H. Sukegawa, K. Inomata, and S. Mitani, Appl. Phys. Lett. 105, 092403 (2014). https://doi.org/10.1063/1.4895104, Google ScholarScitation, ISI
- 18. H. Sukegawa, S. Mitani, T. Ohkubo, K. Inomata, and K. Hono, Appl. Phys. Lett. 103, 142409 (2013). https://doi.org/10.1063/1.4824134, Google ScholarScitation, ISI
- 19. M. Tsunoda, R. Chiba, and K. Kabara, J. Appl. Phys. 117, 17D703 (2015). https://doi.org/10.1063/1.4906762, Google ScholarScitation, ISI
- 20. B. S. Tao, H. X. Yang, Y. L. Zuo, X. Devaux, G. Lengaigne, M. Hehn, D. Lacour, S. Andrieu, M. Chshiev, T. Hauet, F. Montaigne, S. Mangin, X. F. Han, and Y. Lu, Phys. Rev. Lett. 115, 157204 (2015). https://doi.org/10.1103/PhysRevLett.115.157204, Google ScholarCrossref
- 21. Q. Xiang, R. Mandal, H. Sukegawa, Y. K. Takahashi, and S. Mitani, Appl. Phys. Express 11, 063008 (2018). https://doi.org/10.7567/APEX.11.063008, Google ScholarCrossref
- 22. K. Yakushiji, A. Sugihara, T. Nakano, and S. Yuasa, Appl. Phys. Lett. 115, 202403 (2019). https://doi.org/10.1063/1.5116055, Google ScholarScitation, ISI
- 23. H. Sukegawa, J. P. Hadorn, Z. Wen, T. Ohkubo, S. Mitani, and K. Hono, Appl. Phys. Lett. 110, 112403 (2017). https://doi.org/10.1063/1.4978663, Google ScholarScitation, ISI
- 24. J. P. Hadorn, H. Sukegawa, T. Ohkubo, S. Mitani, and K. Hono, Acta Mater. 145, 306 (2018). https://doi.org/10.1016/j.actamat.2017.12.018, Google ScholarCrossref
- 25. D. C. Worledge and P. L. Trouilloud, Appl. Phys. Lett. 83, 84 (2003). https://doi.org/10.1063/1.1590740, Google ScholarScitation, ISI
- 26. G. Miao, Y. Park, J. Moodera, M. Seibt, G. Eilers, and M. Münzenberg, Phys. Rev. Lett. 100, 246803 (2008). https://doi.org/10.1103/PhysRevLett.100.246803, Google ScholarCrossref
- 27. C. Tiusan, M. Sicot, J. Faure-Vincent, M. Hehn, C. Bellouard, F. Montaigne, S. Andrieu, and A. Schuhl, J. Phys.: Condens. Matter 18, 941 (2006). https://doi.org/10.1088/0953-8984/18/3/012, Google ScholarCrossref, ISI
- 28. M. Belmoubarik, H. Sukegawa, T. Ohkubo, S. Mitani, and K. Hono, AIP Adv. 7, 055908 (2017). https://doi.org/10.1063/1.4973393, Google ScholarScitation, ISI
- 29. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257, Google ScholarCrossref, ISI
- 30. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005). https://doi.org/10.1063/1.1871344, Google ScholarScitation, ISI
- 31. Y. Miura, S. Muramoto, K. Abe, and M. Shirai, Phys. Rev. B 86, 024426 (2012). https://doi.org/10.1103/PhysRevB.86.024426, Google ScholarCrossref
- 32. S. M. Hosseini, Phys. Status Solidi B 245, 2800 (2008). https://doi.org/10.1002/pssb.200844142, Google ScholarCrossref
- 33. S. Ju, Y. Miura, K. Yamamoto, K. Masuda, K. Uchida, and J. Shiomi, Phys. Rev. Res. 2, 023187 (2020). https://doi.org/10.1103/PhysRevResearch.2.023187, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.