ABSTRACT
Electro-optic time lenses are promising experimental components for photonic spectral-temporal processing of quantum information. We report a stable method to realize an electro-optic time lens, which relies on the amplification of an electronic response of a fast photodiode. The method does not require a repetitive clock and may be applied to aperiodic optical signals. We experimentally demonstrate the approach using single-photon pulses, and directly verify its aperiodicity. The approach will enable the construction of complex electro-optic temporal optical systems.
We would like to thank C. Radzewicz and M. Jachura for the insightful discussions and K. Banaszek for access to the experimental equipment. This research was funded in part by the National Science Centre of Poland (Project No. 2014/15/D/ST2/02385) and in part by the First TEAM programme of the Foundation for Polish Science (Project No. POIR.04.04.00-00-5E00/18), co-financed by the European Union under the European Regional Development Fund.
REFERENCES
- 1. W. Wasilewski, P. Kolenderski, and R. Frankowski, “ Spectral density matrix of a single photon measured,” Phys. Rev. Lett. 99, 123601 (2007). https://doi.org/10.1103/PhysRevLett.99.123601, Google ScholarCrossref
- 2. J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “ Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014). https://doi.org/10.1038/nphoton.2013.340, Google ScholarCrossref, ISI
- 3. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “ Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015). https://doi.org/10.1103/PhysRevX.5.041017, Google ScholarCrossref
- 4. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “ On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017). https://doi.org/10.1038/nature22986, Google ScholarCrossref, ISI
- 5. J. M. Lukens and P. Lougovski, “ Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017). https://doi.org/10.1364/OPTICA.4.000008, Google ScholarCrossref, ISI
- 6. A. O. C. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “ Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018). https://doi.org/10.1103/PhysRevLett.121.083602, Google ScholarCrossref
- 7. M. G. Raymer and I. A. Walmsley, “ Temporal modes in quantum optics: Then and now,” Phys. Scr. 95, 064002 (2020). https://doi.org/10.1088/1402-4896/ab6153, Google ScholarCrossref
- 8. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “ Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008). https://doi.org/10.1103/PhysRevLett.101.103601, Google ScholarCrossref
- 9. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J.-M. Merolla, “ Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14, 043015 (2012). https://doi.org/10.1088/1367-2630/14/4/043015, Google ScholarCrossref
- 10. Y. Zhu, J. Kim, and D. J. Gauthier, “ Aberration-corrected quantum temporal imaging system,” Phys. Rev. A 87, 043808 (2013). https://doi.org/10.1103/PhysRevA.87.043808, Google ScholarCrossref
- 11. L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “ Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016). https://doi.org/10.1038/nphoton.2016.206, Google ScholarCrossref
- 12. M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “ Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2017). https://doi.org/10.1038/nphoton.2016.228, Google ScholarCrossref
- 13. S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “ Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017). https://doi.org/10.1103/PhysRevA.96.043807, Google ScholarCrossref
- 14. F. Sośnicki and M. Karpiński, “ Large-scale spectral bandwidth compression by complex electro-optic temporal phase modulation,” Opt. Express 26, 31307–31316 (2018). https://doi.org/10.1364/OE.26.031307, Google ScholarCrossref
- 15. H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “ Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018). https://doi.org/10.1103/PhysRevLett.120.030502, Google ScholarCrossref, ISI
- 16. V. Torres-Company, J. Lancis, and P. Andrés, “ Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). https://doi.org/10.1016/B978-0-444-53886-4.00001-0, Google ScholarCrossref
- 17. R. Salem, M. A. Foster, and A. L. Gaeta, “ Application of space–time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013). https://doi.org/10.1364/AOP.5.000274, Google ScholarCrossref
- 18. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “ Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017). https://doi.org/10.1038/ncomms14288, Google ScholarCrossref
- 19. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “ Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013). https://doi.org/10.1364/OE.21.015959, Google ScholarCrossref
- 20. G. Patera and M. I. Kolobov, “ Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015). https://doi.org/10.1364/OL.40.001125, Google ScholarCrossref
- 21. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “ Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013). https://doi.org/10.1038/nphoton.2013.47, Google ScholarCrossref
- 22. N. Matsuda, “ Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016). https://doi.org/10.1126/sciadv.1501223, Google ScholarCrossref
- 23. M. Mazelanik, A. Leszczyński, M. Lipka, M. Parniak, and W. Wasilewski, “ Temporal imaging for ultra-narrowband few-photon states of light,” Optica 7, 203–208 (2020). https://doi.org/10.1364/OPTICA.382891, Google ScholarCrossref
- 24. B. H. Kolner, “ Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). https://doi.org/10.1109/3.301659, Google ScholarCrossref, ISI
- 25. I. Y. Poberezhskiy, B. J. Bortnik, S.-K. Kim, and H. R. Fetterman, “ Electro-optic polymer frequency shifter activated by input optical pulses,” Opt. Lett. 28, 1570–1572 (2003). https://doi.org/10.1364/OL.28.001570, Google ScholarCrossref
- 26. Q. Wu and X.-C. Zhang, “ Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). https://doi.org/10.1063/1.114909, Google ScholarScitation, ISI
- 27. M. Jachura, J. Szczepanek, W. Wasilewski, and M. Karpiński, “ Measurement of radio-frequency temporal phase modulation using spectral interferometry,” J. Mod. Opt. 65, 262–267 (2018). https://doi.org/10.1080/09500340.2017.1387676, Google ScholarCrossref
- 28. X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “ Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33, 875–877 (2008). https://doi.org/10.1364/OL.33.000875, Google ScholarCrossref
- 29. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U'Ren, C. Silberhorn, and I. A. Walmsley, “ Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). https://doi.org/10.1103/PhysRevLett.100.133601, Google ScholarCrossref
- 30. J. Capmany and D. Novak, “ Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). https://doi.org/10.1038/nphoton.2007.89, Google ScholarCrossref
- 31. F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “ Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013). https://doi.org/10.1038/nphoton.2013.33, Google ScholarCrossref
- 32. A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J. Smith, “ Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings,” Opt. Express 25, 12804–12811 (2017). https://doi.org/10.1364/OE.25.012804, Google ScholarCrossref
- 33. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “ Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009). https://doi.org/10.1103/PhysRevA.80.043821, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.