No Access Submitted: 17 April 2020 Accepted: 24 May 2020 Published Online: 11 June 2020
Appl. Phys. Lett. 116, 234003 (2020); https://doi.org/10.1063/5.0011077
more...View Affiliations
View Contributors
  • F. Sośnicki
  • M. Mikołajczyk
  • A. Golestani
  • M. Karpiński
Electro-optic time lenses are promising experimental components for photonic spectral-temporal processing of quantum information. We report a stable method to realize an electro-optic time lens, which relies on the amplification of an electronic response of a fast photodiode. The method does not require a repetitive clock and may be applied to aperiodic optical signals. We experimentally demonstrate the approach using single-photon pulses, and directly verify its aperiodicity. The approach will enable the construction of complex electro-optic temporal optical systems.
We would like to thank C. Radzewicz and M. Jachura for the insightful discussions and K. Banaszek for access to the experimental equipment. This research was funded in part by the National Science Centre of Poland (Project No. 2014/15/D/ST2/02385) and in part by the First TEAM programme of the Foundation for Polish Science (Project No. POIR.04.04.00-00-5E00/18), co-financed by the European Union under the European Regional Development Fund.
  1. 1. W. Wasilewski, P. Kolenderski, and R. Frankowski, “ Spectral density matrix of a single photon measured,” Phys. Rev. Lett. 99, 123601 (2007). https://doi.org/10.1103/PhysRevLett.99.123601, Google ScholarCrossref
  2. 2. J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, “ Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014). https://doi.org/10.1038/nphoton.2013.340, Google ScholarCrossref, ISI
  3. 3. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “ Photon temporal modes: A complete framework for quantum information science,” Phys. Rev. X 5, 041017 (2015). https://doi.org/10.1103/PhysRevX.5.041017, Google ScholarCrossref
  4. 4. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “ On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017). https://doi.org/10.1038/nature22986, Google ScholarCrossref, ISI
  5. 5. J. M. Lukens and P. Lougovski, “ Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017). https://doi.org/10.1364/OPTICA.4.000008, Google ScholarCrossref, ISI
  6. 6. A. O. C. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “ Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018). https://doi.org/10.1103/PhysRevLett.121.083602, Google ScholarCrossref
  7. 7. M. G. Raymer and I. A. Walmsley, “ Temporal modes in quantum optics: Then and now,” Phys. Scr. 95, 064002 (2020). https://doi.org/10.1088/1402-4896/ab6153, Google ScholarCrossref
  8. 8. P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, “ Electro-optic modulation of single photons,” Phys. Rev. Lett. 101, 103601 (2008). https://doi.org/10.1103/PhysRevLett.101.103601, Google ScholarCrossref
  9. 9. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J.-M. Merolla, “ Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14, 043015 (2012). https://doi.org/10.1088/1367-2630/14/4/043015, Google ScholarCrossref
  10. 10. Y. Zhu, J. Kim, and D. J. Gauthier, “ Aberration-corrected quantum temporal imaging system,” Phys. Rev. A 87, 043808 (2013). https://doi.org/10.1103/PhysRevA.87.043808, Google ScholarCrossref
  11. 11. L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “ Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016). https://doi.org/10.1038/nphoton.2016.206, Google ScholarCrossref
  12. 12. M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “ Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11, 53–57 (2017). https://doi.org/10.1038/nphoton.2016.228, Google ScholarCrossref
  13. 13. S. Mittal, V. V. Orre, A. Restelli, R. Salem, E. A. Goldschmidt, and M. Hafezi, “ Temporal and spectral manipulations of correlated photons using a time lens,” Phys. Rev. A 96, 043807 (2017). https://doi.org/10.1103/PhysRevA.96.043807, Google ScholarCrossref
  14. 14. F. Sośnicki and M. Karpiński, “ Large-scale spectral bandwidth compression by complex electro-optic temporal phase modulation,” Opt. Express 26, 31307–31316 (2018). https://doi.org/10.1364/OE.26.031307, Google ScholarCrossref
  15. 15. H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E. Leaird, A. M. Weiner, and P. Lougovski, “ Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing,” Phys. Rev. Lett. 120, 030502 (2018). https://doi.org/10.1103/PhysRevLett.120.030502, Google ScholarCrossref, ISI
  16. 16. V. Torres-Company, J. Lancis, and P. Andrés, “ Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). https://doi.org/10.1016/B978-0-444-53886-4.00001-0, Google ScholarCrossref
  17. 17. R. Salem, M. A. Foster, and A. L. Gaeta, “ Application of space–time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013). https://doi.org/10.1364/AOP.5.000274, Google ScholarCrossref
  18. 18. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “ Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017). https://doi.org/10.1038/ncomms14288, Google ScholarCrossref
  19. 19. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “ Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013). https://doi.org/10.1364/OE.21.015959, Google ScholarCrossref
  20. 20. G. Patera and M. I. Kolobov, “ Temporal imaging with squeezed light,” Opt. Lett. 40, 1125–1128 (2015). https://doi.org/10.1364/OL.40.001125, Google ScholarCrossref
  21. 21. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “ Spectral compression of single photons,” Nat. Photonics 7, 363–366 (2013). https://doi.org/10.1038/nphoton.2013.47, Google ScholarCrossref
  22. 22. N. Matsuda, “ Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2, e1501223 (2016). https://doi.org/10.1126/sciadv.1501223, Google ScholarCrossref
  23. 23. M. Mazelanik, A. Leszczyński, M. Lipka, M. Parniak, and W. Wasilewski, “ Temporal imaging for ultra-narrowband few-photon states of light,” Optica 7, 203–208 (2020). https://doi.org/10.1364/OPTICA.382891, Google ScholarCrossref
  24. 24. B. H. Kolner, “ Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994). https://doi.org/10.1109/3.301659, Google ScholarCrossref, ISI
  25. 25. I. Y. Poberezhskiy, B. J. Bortnik, S.-K. Kim, and H. R. Fetterman, “ Electro-optic polymer frequency shifter activated by input optical pulses,” Opt. Lett. 28, 1570–1572 (2003). https://doi.org/10.1364/OL.28.001570, Google ScholarCrossref
  26. 26. Q. Wu and X.-C. Zhang, “ Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). https://doi.org/10.1063/1.114909, Google ScholarScitation, ISI
  27. 27. M. Jachura, J. Szczepanek, W. Wasilewski, and M. Karpiński, “ Measurement of radio-frequency temporal phase modulation using spectral interferometry,” J. Mod. Opt. 65, 262–267 (2018). https://doi.org/10.1080/09500340.2017.1387676, Google ScholarCrossref
  28. 28. X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “ Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33, 875–877 (2008). https://doi.org/10.1364/OL.33.000875, Google ScholarCrossref
  29. 29. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U'Ren, C. Silberhorn, and I. A. Walmsley, “ Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). https://doi.org/10.1103/PhysRevLett.100.133601, Google ScholarCrossref
  30. 30. J. Capmany and D. Novak, “ Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007). https://doi.org/10.1038/nphoton.2007.89, Google ScholarCrossref
  31. 31. F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “ Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013). https://doi.org/10.1038/nphoton.2013.33, Google ScholarCrossref
  32. 32. A. O. C. Davis, P. M. Saulnier, M. Karpiński, and B. J. Smith, “ Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings,” Opt. Express 25, 12804–12811 (2017). https://doi.org/10.1364/OE.25.012804, Google ScholarCrossref
  33. 33. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “ Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009). https://doi.org/10.1103/PhysRevA.80.043821, Google ScholarCrossref
  1. © 2020 Author(s). Published under license by AIP Publishing.