No Access Submitted: 05 March 2020 Accepted: 21 June 2020 Published Online: 15 July 2020
Physics of Plasmas 27, 072507 (2020); https://doi.org/10.1063/5.0006765
more...View Affiliations
View Contributors
  • J. Zielinski
  • M. Becoulet
  • A. I. Smolyakov
  • X. Garbet
  • G. T. A. Huijsmans
  • P. Beyer
  • S. Benkadda
We present global linear and nonlinear simulations of ion temperature gradient instabilities based on a fluid formulation, with an adapted version of the JOREK code. These simulations are performed in realistic global tokamak equilibria based on the solution of the Grad–Shafranov equation. Benchmarking of linear growth rates was successfully completed with respect to previously published data. We find two distinct types of eigenstructures, depending on the magnetic shear. For high shear, when the coupling of poloidal harmonics is strong, ballooning-type eigenmodes are formed, which are up-down asymmetric with a finite ballooning angle, θ0. The poloidal harmonics which form the global eigenmode are found to demonstrate a radial shift, being centered well outside of their corresponding rational surface. Stronger diamagnetic effects increase both θ0 and proportionately shift the m harmonics to larger radii (by as much as two rational surfaces). In the low shear regime, the unstable eigenmodes become narrowly localized between neighboring pairs of rational surfaces, and exhibit no up-down asymmetry. Our simulations also show the generation of finite Reynolds stress due to nonlocal/global profile effects. This stress possesses both poloidally symmetric ( n = m = 0) and asymmetric (finite-m) components. Turbulent saturation in nonlinear simulations is demonstrated for both shear regimes.
This work was supported by a Government of Canada NSERC Grant, Mitacs Globalink Research Award, and EUROFUSION Grant No. CfP-WP19-ENR-01/MPG-03. This work has also benefited from HPC resources from CINECA Marconi-Fusion, Project Nos. FUA32_JOREK3D and FUA33_JOREK3DE. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
  1. 1. T. Xie, H. Qin, Y. Z. Zhang, and S. M. Mahajan, “ The unified ballooning theory with weak up-down asymmetric mode structure and the numerical studies,” Phys. Plasmas 23, 042514 (2016). https://doi.org/10.1063/1.4947556, Google ScholarScitation, ISI
  2. 2. P. Manz, A. Stegmeir, B. Schmid, T. T. Ribeiro, G. Birkenmeier, N. Fedorczak, S. Garland, K. Hallatschek, M. Ramisch, and B. D. Scott, “ Magnetic configuration effects on the Reynolds stress in the plasma edge,” Phys. Plasmas 25, 072508 (2018). https://doi.org/10.1063/1.5037511, Google ScholarScitation, ISI
  3. 3. P. A. Abdoul, D. Dickinson, C. M. Roach, and H. R. Wilson, “ Generalised ballooning theory of two-dimensional tokamak modes,” Plasma Phys. Controlled Fusion 60, 025011 (2018). https://doi.org/10.1088/1361-6587/aa9352, Google ScholarCrossref
  4. 4. P. Migliano, Y. Camenen, F. J. Casson, W. A. Hornsby, and A. G. Peeters, “ Ion temperature gradient instability at sub-Larmor radius scales with non-zero ballooning angle,” Phys. Plasmas 20, 022101 (2013). https://doi.org/10.1063/1.4789856, Google ScholarScitation, ISI
  5. 5. R. Singh, S. Brunner, R. Ganesh, and F. Jenko, “ Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations,” Phys. Plasmas 21, 032115 (2014). https://doi.org/10.1063/1.4868425, Google ScholarScitation, ISI
  6. 6. T. Xie, Y. Z. Zhang, S. M. Mahajan, and A. K. Wang, “ Ballooning theory of the second kind-two dimensional tokamak modes,” Phys. Plasmas 19, 072105 (2012). https://doi.org/10.1063/1.4731724, Google ScholarScitation, ISI
  7. 7. X. Garbet, Y. Asahi, P. Donnel, C. Ehrlacher, G. Dif-Pradalier, P. Ghendrih, V. Grandgirard, and Y. Sarazin, “ Impact of poloidal convective cells on momentum flux in tokamaks,” New J. Phys. 19, 015011 (2017). https://doi.org/10.1088/1367-2630/aa5772, Google ScholarCrossref
  8. 8. P. A. Abdoul, D. Dickinson, C. M. Roach, and H. R. Wilson, “ Using a local gyrokinetic code to study global ion temperature gradient modes in tokamaks,” Plasma Phys. Controlled Fusion 57, 065004 (2015). https://doi.org/10.1088/0741-3335/57/6/065004, Google ScholarCrossref
  9. 9. J. Y. Kim, Y. Kishimoto, M. Wakatani, and T. Tajima, “ Poloidal shear flow effect on toroidal ion temperature gradient mode: A theory and simulation,” Phys. Plasmas 3, 3689–3695 (1996). https://doi.org/10.1063/1.871939, Google ScholarScitation, ISI
  10. 10. A. Bottino, A. G. Peeters, O. Sauter, J. Vaclavik, and L. Villard, “ Simulations of global electrostatic microinstabilities in ASDEX upgrade discharges,” Phys. Plasmas 11, 198–206 (2004). https://doi.org/10.1063/1.1633554, Google ScholarScitation, ISI
  11. 11. V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, and L. Villard, “ Global full-f gyrokinetic simulations of plasma turbulence,” Plasma Phys. Controlled Fusion 49, B173–B182 (2007). https://doi.org/10.1088/0741-3335/49/12B/S16, Google ScholarCrossref
  12. 12. V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, and P. Bertrand, “ GYSELA, a full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations,” AIP Conf. Proc. 871, 100–111 (2006). https://doi.org/10.1063/1.2404543, Google ScholarScitation
  13. 13. G. Dif-Pradalier, V. Grandgirard, Y. Sarazin, X. Garbet, P. Ghendrih, and P. Angelino, “ On the influence of initial state on gyrokinetic simulations,” Phys. Plasmas 15, 042315 (2008). https://doi.org/10.1063/1.2904901, Google ScholarScitation, ISI
  14. 14. B. F. McMillan, S. Jolliet, T. M. Tran, L. Villard, A. Bottino, and P. Angelino, “ Avalanchelike bursts in global gyrokinetic simulations,” Phys. Plasmas 16, 022310 (2009). https://doi.org/10.1063/1.3079076, Google ScholarScitation, ISI
  15. 15. L. Villard, A. Bottino, O. Sauter, and J. Vaclavik, “ Radial electric fields and global electrostatic microinstabilities in tokamaks and stellarators,” Phys. Plasmas 9, 2684–2691 (2002). https://doi.org/10.1063/1.1477921, Google ScholarScitation, ISI
  16. 16. B. Zhu, M. Francisquez, and B. N. Rogers, “ GDB: A global 3D two-fluid model of plasma turbulence and transport in the tokamak edge,” Comput. Phys. Commun. 232, 46–58 (2018). https://doi.org/10.1016/j.cpc.2018.06.002, Google ScholarCrossref
  17. 17. P. Ricci and B. N. Rogers, “ Plasma turbulence in the scrape-off layer of tokamak devices,” Phys. Plasmas 20, 010702 (2013). https://doi.org/10.1063/1.4789551, Google ScholarScitation, ISI
  18. 18. R. D. Sydora, V. K. Decyk, and J. M. Dawson, “ Fluctuation-induced heat transport results from a large global 3D toroidal particle simulation model,” Plasma Phys. Controlled Fusion 38, A281–A294 (1996). https://doi.org/10.1088/0741-3335/38/12A/021, Google ScholarCrossref
  19. 19. X. Garbet, Y. Idomura, L. Villard, and T. Watanabe, “ Gyrokinetic simulations of turbulent transport,” Nucl. Fusion 50, 043002 (2010). https://doi.org/10.1088/0029-5515/50/4/043002, Google ScholarCrossref
  20. 20. T. Xie, Y. Z. Zhang, S. M. Mahajan, Z. Y. Liu, and H. He, “ The Reynolds stress induced by weakly up-down asymmetric ion temperature gradient mode,” Phys. Plasmas 23, 102313 (2016). https://doi.org/10.1063/1.4966241, Google ScholarScitation, ISI
  21. 21. Y. Z. Zhang and S. M. Mahajan, “ Reynolds stress of localized toroidal modes,” Phys. Plasmas 2, 4236–4245 (1995). https://doi.org/10.1063/1.871048, Google ScholarScitation, ISI
  22. 22. M. Becoulet, G. Huysmans, Y. Sarazin, X. Garbet, P. Ghendrih, F. Rimini, E. Joffrin, X. Litaudon, P. Monier-Garbet, J. M. Ane, P. Thomas, A. Grosman, V. Parail, H. Wilson, P. Lomas, P. DeVries, K. D. Zastrow, G. F. Matthews, J. Lonnroth, S. Gerasimov, S. Sharapov, M. Gryaznevich, G. Counsell, A. Kirk, M. Valovic, R. Buttery, A. Loarte, G. Saibene, R. Sartori, A. Leonard, P. Snyder, L. L. Lao, P. Gohil, T. E. Evans, R. A. Moyer, Y. Kamada, A. Chankin, N. Oyama, T. Hatae, N. Asakura, O. Tudisco, E. Giovannozzi, F. Crisanti, C. P. Perez, H. R. Koslowski, T. Eich, A. Sips, L. Horton, A. Hermann, P. Lang, J. Stober, W. Suttrop, P. Beyer, S. Saarelma, and J.-E. Workprogramme, “ Edge localized mode physics and operational aspects in tokamaks,” Plasma Phys. Controlled Fusion 45, A93–A113 (2003). https://doi.org/10.1088/0741-3335/45/12A/007, Google ScholarCrossref
  23. 23. M. Becoulet, F. Orain, P. Maget, N. Mellet, X. Garbet, E. Nardon, G. T. A. Huysmans, T. Casper, A. Loarte, P. Cahyna, A. Smolyakov, F. L. Waelbroeck, M. Schaffer, T. Evans, Y. Liang, O. Schmitz, M. Beurskens, V. Rozhansky, and E. Kaveeva, “ Screening of resonant magnetic perturbations by flows in tokamaks,” Nucl. Fusion 52, 054003 (2012). https://doi.org/10.1088/0029-5515/52/5/054003, Google ScholarCrossref
  24. 24. A. Monnier, G. Fuhr, P. Beyer, F. A. Marcus, S. Benkadda, and X. Garbet, “ Penetration of resonant magnetic perturbations in turbulent edge plasmas,” Nucl. Fusion 54, 064018 (2014). https://doi.org/10.1088/0029-5515/54/6/064018, Google ScholarCrossref
  25. 25. P. Beyer, S. Benkadda, G. Fuhr-Chaudier, X. Garbet, P. Ghendrih, and Y. Sarazin, “ Turbulence simulations of transport barrier relaxations in tokamak edge plasmas,” Plasma Phys. Controlled Fusion 49, 507–523 (2007). https://doi.org/10.1088/0741-3335/49/4/013, Google ScholarCrossref
  26. 26. P. Beyer, F. de Solminihac, M. Leconte, X. Garbet, F. L. Waelbroeck, A. I. Smolyakov, and S. Benkadda, “ Turbulence simulations of barrier relaxations and transport in the presence of magnetic islands at the tokamak edge,” Plasma Phys. Controlled Fusion 53, 054003 (2011). https://doi.org/10.1088/0741-3335/53/5/054003, Google ScholarCrossref
  27. 27. L. Chôné, P. Beyer, Y. Sarazin, G. Fuhr, C. Bourdelle, and S. Benkadda, “ L-H transition dynamics in fluid turbulence simulations with neoclassical force balance,” Phys. Plasmas 21, 070702 (2014). https://doi.org/10.1063/1.4890971, Google ScholarScitation, ISI
  28. 28. L. Chôné, P. Beyer, Y. Sarazin, G. Fuhr, C. Bourdelle, and S. Benkadda, “ Mechanisms and dynamics of the external transport barrier formation in non-linear plasma edge simulations,” Nucl. Fusion 55, 073010 (2015). https://doi.org/10.1088/0029-5515/55/7/073010, Google ScholarCrossref
  29. 29. M. Han, Z.-X. Wang, J. Dong, and H. Du, “ Multiple ion temperature gradient driven modes in transport barriers,” Nucl. Fusion 57, 046019 (2017). https://doi.org/10.1088/1741-4326/aa5d02, Google ScholarCrossref
  30. 30. W. Wang, W. Zhengxiong, L. Jiquan, Y. Kishimoto, J. Dong, and S. Zheng, “ Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects,” Plasma Sci. Technol. 20, 075101 (2018). https://doi.org/10.1088/2058-6272/aab48f, Google ScholarCrossref
  31. 31. A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland, “ Comparisons and physics basis of tokamak transport models and turbulence simulations,” Phys. Plasmas 7, 969–983 (2000). https://doi.org/10.1063/1.873896, Google ScholarScitation, ISI
  32. 32. X. Lapillonne, S. Brunner, T. Dannert, S. Jolliet, A. Marinoni, L. Villard, T. Görler, F. Jenko, and F. Merz, “ Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence,” Phys. Plasmas 16, 032308 (2009). https://doi.org/10.1063/1.3096710, Google ScholarScitation, ISI
  33. 33. P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, “ Zonal flows in plasma—A review,” Plasma Phys. Controlled Fusion 47, R35–R161 (2005). https://doi.org/10.1088/0741-3335/47/5/R01, Google ScholarCrossref, ISI
  34. 34. L. Vermare, P. Hennequin, Ö. D. Gürcan, X. Garbet, C. Honoré, F. Clairet, J. C. Giacalone, P. Morel, A. Storelli, and T. S. Team, “ Poloidal asymmetries of flows in the Tore Supra tokamak,” Phys. Plasmas 25, 020704 (2018). https://doi.org/10.1063/1.5022122, Google ScholarScitation, ISI
  35. 35. T. Xie, Y. Z. Zhang, S. M. Mahajan, F. Wu, H. D. He, and Z. Y. Liu, “ The two-dimensional kinetic ballooning theory for trapped electron mode in tokamak,” Phys. Plasmas 26, 022503 (2019). https://doi.org/10.1063/1.5048538, Google ScholarScitation, ISI
  36. 36. A. Stegmeir, A. Ross, T. Body, M. Francisquez, W. Zholobenko, D. Coster, O. Maj, P. Manz, F. Jenko, B. N. Rogers, and K. S. Kang, “ Global turbulence simulations of the tokamak edge region with GRILLIX,” Phys. Plasmas 26, 052517 (2019). https://doi.org/10.1063/1.5089864, Google ScholarScitation, ISI
  37. 37. B. Coppi and F. Pegoraro, “ Theory of the ubiquitous mode,” Nucl. Fusion 17, 969–993 (1977). https://doi.org/10.1088/0029-5515/17/5/009, Google ScholarCrossref
  38. 38. W. Horton, D. Choi, and W. M. Tang, “ Toroidal drift modes driven by ion pressure gradients,” Phys. Fluids 24, 1077–1085 (1981). https://doi.org/10.1063/1.863486, Google ScholarScitation, ISI
  39. 39. H. Nordman, J. Weiland, and A. Jarmén, “ Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping,” Nucl. Fusion 30, 983 (1990). https://doi.org/10.1088/0029-5515/30/6/001, Google ScholarCrossref
  40. 40. S. Guo and J. Weiland, “ Analysis of eta i mode by reactive and dissipative descriptions and the effects of magnetic q and negative shear on the transport,” Nucl. Fusion 37, 1095–1107 (1997). https://doi.org/10.1088/0029-5515/37/8/I05, Google ScholarCrossref
  41. 41. W. Horton and R. D. Estes, “ Fluid simulation of ion pressure gradient driven drift modes,” Plasma Phys. 22, 663–678 (1980). https://doi.org/10.1088/0032-1028/22/7/004, Google ScholarCrossref
  42. 42. B. Coppi, M. N. Rosenbluth, and R. Z. Sagdeev, “ Instabilities due to temperature gradients in complex magnetic field configurations,” Phys. Fluids 10, 582–587 (1967). https://doi.org/10.1063/1.1762151, Google ScholarScitation, ISI
  43. 43. F. Romanelli, “ Ion temperature-gradient-driven modes and anomalous ion transport in tokamaks,” Phys. Fluids B 1, 1018–1025 (1989). https://doi.org/10.1063/1.859023, Google ScholarScitation, ISI
  44. 44. S. C. Guo and F. Romanelli, “ The linear threshold of the ion-temperature-gradient-driven mode,” Phys. Fluids B 5, 520–533 (1993). https://doi.org/10.1063/1.860537, Google ScholarScitation, ISI
  45. 45. G. W. Hammett and F. W. Perkins, “ Fluid moment models for landau damping with application to the ion-temperature-gradient instability,” Phys. Rev. Lett. 64, 3019–3022 (1990). https://doi.org/10.1103/PhysRevLett.64.3019, Google ScholarCrossref
  46. 46. B. Scott, “ Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities,” Phys. Plasmas 17, 102306 (2010). https://doi.org/10.1063/1.3484219, Google ScholarScitation, ISI
  47. 47. F. L. Hinton and C. W. Horton, “ Amplitude limitation of a collisional drift wave instability,” Phys. Fluids 14, 116–123 (1971). https://doi.org/10.1063/1.1693260, Google ScholarScitation, ISI
  48. 48. S. Braginskii, “ Transport processes in a plasma,” Rev. Plasma Phys. 1, 205 (1965). Google Scholar
  49. 49. B. D. Scott, “ Drift wave versus interchange turbulence in tokamak geometry: Linear versus nonlinear mode structure,” Phys. Plasmas 12, 062314 (2005). https://doi.org/10.1063/1.1917866, Google ScholarScitation, ISI
  50. 50. G. Huysmans and O. Czarny, “ MHD stability in x-point geometry: Simulation of ELMs,” Nucl. Fusion 47, 659–666 (2007). https://doi.org/10.1088/0029-5515/47/7/016, Google ScholarCrossref, ISI
  51. 51. F. Orain, M. Bécoulet, G. Dif-Pradalier, G. Huijsmans, S. Pamela, E. Nardon, C. Passeron, G. Latu, V. Grandgirard, A. Fil, A. Ratnani, I. Chapman, A. Kirk, A. Thornton, M. Hoelzl, and P. Cahyna, “ Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations,” Phys. Plasmas 20, 102510 (2013). https://doi.org/10.1063/1.4824820, Google ScholarScitation, ISI
  52. 52. A. Fil, E. Nardon, M. Hoelzl, G. T. A. Huijsmans, F. Orain, M. Becoulet, P. Beyer, G. Dif-Pradalier, R. Guirlet, H. R. Koslowski, M. Lehnen, J. Morales, S. Pamela, C. Passeron, C. Reux, and F. Saint-Laurent, “ Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET,” Phys. Plasmas 22, 062509 (2015). https://doi.org/10.1063/1.4922846, Google ScholarScitation, ISI
  53. 53. X. Garbet and R. E. Waltz, “ Heat flux driven ion turbulence,” Phys. Plasmas 5, 2836–2845 (1998). https://doi.org/10.1063/1.873003, Google ScholarScitation, ISI
  54. 54. J. W. Connor, R. J. Hastie, and J. B. Taylor, “ Shear, periodicity, and plasma ballooning modes,” Phys. Rev. Lett. 40, 396–399 (1978). https://doi.org/10.1103/PhysRevLett.40.396, Google ScholarCrossref
  55. 55. J. W. Connor and J. B. Taylor, “ Ballooning modes or Fourier modes in a toroidal plasma?,” Phys. Fluids 30, 3180–3185 (1987). https://doi.org/10.1063/1.866493, Google ScholarScitation, ISI
  56. 56. J. Manickam, N. Pomphrey, and A. Todd, “ Ideal MHD stability properties of pressure driven modes in low shear tokamaks,” Nucl. Fusion 27, 1461–1472 (1987). https://doi.org/10.1088/0029-5515/27/9/009, Google ScholarCrossref
  57. 57. L. A. Charlton, R. J. Hastie, and T. C. Hender, “ Resistive “infernal” modes,” Phys. Fluids B 1, 798–803 (1989). https://doi.org/10.1063/1.859004, Google ScholarScitation, ISI
  58. 58. H. Holties, G. Huysmans, J. Goedbloed, W. Kerner, V. Parail, and F. Soldner, “ Stability of infernal and ballooning modes in advanced tokamak scenarios,” Nucl. Fusion 36, 973–986 (1996). https://doi.org/10.1088/0029-5515/36/8/I03, Google ScholarCrossref
  59. 59. V. Dagnelie, “ Dynamics of linear ITG modes with flow shear in ballooning space,” Master's thesis ( Utrecht University, 2017). Google Scholar
  60. 60. H. Wilson, P. Buxton, and J. Connor, “ The effect of flow on ideal magnetohydrodynamic ballooning instabilities: A tutorial,” in Rotation and Momentum Transport in Magnetized Plasmas, edited by P. Diamond , X. Garbet , P. Ghendrih , and Y. Sarazin ( World Scientific, 2014), Vol. 2, Chap. 5, pp. 137–163. Google Scholar
  61. 61. J. Kesner, “ Effects of equilibrium on instabilities driven by ion temperature gradients in tokamaks,” Nucl. Fusion 31, 511 (1991). https://doi.org/10.1088/0029-5515/31/3/009, Google ScholarCrossref
  62. 62. Z. X. Lu, E. Fable, W. A. Hornsby, C. Angioni, A. Bottino, P. Lauber, and F. Zonca, “ Symmetry breaking of ion temperature gradient mode structure: From local to global analysis,” Phys. Plasmas 24, 042502 (2017). https://doi.org/10.1063/1.4978947, Google ScholarScitation, ISI
  63. 63. F. Zonca and L. Chen, “ Theory of continuum damping of toroidal Alfvén eigenmodes in finite β tokamaks,” Phys. Fluids B 5, 3668–3690 (1993). https://doi.org/10.1063/1.860839, Google ScholarScitation, ISI
  64. 64. A. Smolyakov, X. Garbet, G. Falchetto, and M. Ottaviani, “ Multiple polarization of geodesic curvature induced modes,” Phys. Lett. A 372, 6750–6756 (2008). https://doi.org/10.1016/j.physleta.2008.09.035, Google ScholarCrossref
  65. 65. D. A. St-Onge, “ On non-local energy transfer via zonal flow in the Dimits shift,” J. Plasma Phys. 83, 905830504 (2017). https://doi.org/10.1017/S0022377817000708, Google ScholarCrossref
  66. 66. A. I. Smolyakov, P. H. Diamond, and M. V. Medvedev, “ Role of ion diamagnetic effects in the generation of large scale flows in toroidal ion temperature gradient mode turbulence,” Phys. Plasmas 7, 3987–3992 (2000). https://doi.org/10.1063/1.1289514, Google ScholarScitation, ISI
  67. 67. Ö. D. Gürcan, P. H. Diamond, P. Hennequin, C. J. McDevitt, X. Garbet, and C. Bourdelle, “ Residual parallel Reynolds stress due to turbulence intensity gradient in tokamak plasmas,” Phys. Plasmas 17, 112309 (2010). https://doi.org/10.1063/1.3503624, Google ScholarScitation, ISI
  68. 68. N. Fedorczak, P. Diamond, G. Tynan, and P. Manz, “ Shear-induced Reynolds stress at the edge of L-mode tokamak plasmas,” Nucl. Fusion 52, 103013 (2012). https://doi.org/10.1088/0029-5515/52/10/103013, Google ScholarCrossref, ISI
  69. 69. N. Fedorczak, P. Ghendrih, P. Hennequin, G. R. Tynan, P. H. Diamond, and P. Manz, “ Dynamics of tilted eddies in a transversal flow at the edge of tokamak plasmas and the consequences for L-H transition,” Plasma Phys. Controlled Fusion 55, 124024 (2013). https://doi.org/10.1088/0741-3335/55/12/124024, Google ScholarCrossref, ISI
  70. 70. P. W. Terry, D. A. Baver, and S. Gupta, “ Role of stable eigenmodes in saturated local plasma turbulence,” Phys. Plasmas 13, 022307 (2006). https://doi.org/10.1063/1.2168453, Google ScholarScitation, ISI
  71. 71. K. D. Makwana, P. W. Terry, J.-H. Kim, and D. R. Hatch, “ Damped eigenmode saturation in plasma fluid turbulence,” Phys. Plasmas 18, 012302 (2011). https://doi.org/10.1063/1.3530186, Google ScholarScitation, ISI
  1. © 2020 Author(s). Published under license by AIP Publishing.