ABSTRACT
In this article, we analyze a compartmental model aimed at mimicking the role of imitation and delation of corruption in social systems. In particular, the model relies on a compartmental dynamics in which individuals can transit between three states: honesty, corruption, and ostracism. We model the transitions from honesty to corruption and from corruption to ostracism as pairwise interactions. In particular, honest agents imitate corrupt peers while corrupt individuals pass to ostracism due to the delation of honest acquaintances. Under this framework, we explore the effects of introducing social intimidation in the delation of corrupt people. To this aim, we model the probability that an honest delates a corrupt agent as a decreasing function of the number of corrupt agents, thus mimicking the fear of honest individuals to reprisals by those corrupt ones. When this mechanism is absent or weak, the phase diagram of the model shows three equilibria [(i) full honesty, (ii) full corruption, and (iii) a mixed state] that are connected via smooth transitions. However, when social intimidation is strong, the transitions connecting these states turn explosive leading to a bistable phase in which a stable full corruption phase coexists with either mixed or full honesty stable equilibria. To shed light on the generality of these transitions, we analyze the model in different network substrates by means of Monte Carlo simulations and deterministic microscopic Markov chain equations. This latter formulation allows us to derive analytically the different bifurcation points that separate the different phases of the system.
ACKNOWLEDGMENTS
We acknowledge financial support from the Spanish Ministerio de Economía y Competitividad through Project No. FIS2017-87519-P and from the Departamento de Industria e Innovación del Gobierno de Aragón y Fondo Social Europeo through Project No. ER (FENOL group).
- 1. T. C. Schelling, Micromotives and Macrobehaviors (Norton, 1978). Google Scholar
- 2. P. W. Anderson, “More is different,” Science 177, 393–396 (1972). https://doi.org/10.1126/science.177.4047.393, Google ScholarCrossref, ISI
- 3. C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81, 591 (2009). https://doi.org/10.1103/RevModPhys.81.591, Google ScholarCrossref, ISI
- 4. T. C. Schelling, J. Math. Sociology 1, 143–186 (1971). https://doi.org/10.1080/0022250X.1971.9989794, Google ScholarCrossref, ISI
- 5. D. J. Daley and D. G. Kendall, J. Inst. Math. Appl. 1, 42 (1965). https://doi.org/10.1093/imamat/1.1.42, Google ScholarCrossref
- 6. R. Axelrod, J. Conflict Resolut. 41, 203–226 (1997). https://doi.org/10.1177/0022002797041002001, Google ScholarCrossref, ISI
- 7. M. Granovetter, Am. J. Sociol. 83, 1420 (1978). https://doi.org/10.1086/226707, Google ScholarCrossref, ISI
- 8. R. Axelrod, The Evolution of Cooperation (Basic Books, 1984). Google Scholar
- 9. M. E. J. Newman, Networks: An Introduction (Oxford University Press, 2018). Google ScholarCrossref
- 10. V. Latora, V. Nicosia, and G. Russo, Complex Networks: Principles, Methods and Applications (Cambridge University Press, 2017). Google ScholarCrossref
- 11. E. Estrada, The Structure of Complex Networks: Theory and Applications (Oxford University Press, 2016). Google Scholar
- 12. P. Holme and J. Saramaki, Phys. Rep. 519, 102 (2012). https://doi.org/10.1016/j.physrep.2012.03.001, Google ScholarCrossref, ISI
- 13. P. Holme and J. Saramaki, Temporal Network Theory (Springer, 2019). Google ScholarCrossref
- 14. S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin, Phys. Rep. 544, 1 (2014). https://doi.org/10.1016/j.physrep.2014.07.001, Google ScholarCrossref, ISI
- 15. M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, J. Complex Netw. 2, 203–271 (2014). https://doi.org/10.1093/comnet/cnu016, Google ScholarCrossref
- 16. M. De Domenico, C. Granell, M. A. Porter, and A. Arenas, Nat. Phys. 12, 901 (2016). https://doi.org/10.1038/nphys3865, Google ScholarCrossref, ISI
- 17. I. Iacopini, G. Petri, A. Barrat, and V. Latora, Nat. Commun. 10, 2485 (2019). https://doi.org/10.1038/s41467-019-10431-6, Google ScholarCrossref, ISI
- 18. D. P. Maki and M. Thompson, Mathematical Models and Applications, With Emphasis on the Social, Life, and Management Sciences (Prentice Hall, Englewood Cliffs, NJ, 1973). Google Scholar
- 19. D. J. Watts, Proc. Natl. Acad. Sci. U.S.A. 99, 5766 (2002). https://doi.org/10.1073/pnas.082090499, Google ScholarCrossref, ISI
- 20. J. Gómez-Gardeñes, L. Lotero, S. N. Taraskin, and F. J. Pérez-Reche, Sci. Rep. 6, 19767 (2016). https://doi.org/10.1038/srep19767, Google ScholarCrossref, ISI
- 21. R. Amato, L. Lacasa, A. Díaz-Guilera, and A. Baronchelli, Proc. Natl. Acad. Sci. U.S.A. 115, 33 (2018). https://doi.org/10.1073/pnas.1721059115, Google ScholarCrossref, ISI
- 22. J. Gómez-Gardeñes, A. S. de Barros, S. T. R. Pinho, and R. F. S. Andrade, Europhys. Lett. 110, 58006 (2015). https://doi.org/10.1209/0295-5075/110/58006, Google ScholarCrossref
- 23. W. O. Kermack and A. G. McKendrick, Proc. Roy. Soc. Lond. Mat. A 115, 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118, Google ScholarCrossref
- 24. R. M. Anderson, R. M. May, and B. Anderson, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992). Google Scholar
- 25. J.-H. Lee, Y. Iwasa, U. Diekmann, and K. Sigmund, Proc. Natl. Acad. Sci. U.S.A. 116, 13276–13281 (2019). https://doi.org/10.1073/pnas.1900078116, Google ScholarCrossref, ISI
- 26. V. N. Kolokoltsov, Int. J. Stat. Probab. 1, 77 (2012). https://doi.org/10.5539/ijsp.v1n1p77, Google ScholarCrossref
- 27. V. N. Kolokoltsov and O. A. Malafeyev, Dyn. Games Appl. 7, 34–47 (2017). https://doi.org/10.1007/s13235-015-0175-x, Google ScholarCrossref, ISI
- 28. J.-H. Lee, K. Sigmund, U. Dieckmann, and Y. Iwasa, J. Theor. Biol. 367, 1–13 (2015). https://doi.org/10.1016/j.jtbi.2014.10.037, Google ScholarCrossref, ISI
- 29. J.-H. Lee, M. Jusup, and Y. Iwasa, J. Theor. Biol. 428, 76–86 (2017). https://doi.org/10.1016/j.jtbi.2017.06.001, Google ScholarCrossref, ISI
- 30. P. Verma and S. Sengupta, PLoS One 10, e0133441 (2015). https://doi.org/10.1371/journal.pone.0133441, Google ScholarCrossref, ISI
- 31. P. Verma, A. K. Nandi, and S. Sengupta, Sci. Rep. 7, 42735 (2017). https://doi.org/10.1038/srep42735, Google ScholarCrossref, ISI
- 32. P. Verma, A. K. Nandi, and S. Sengupta, J. Theor. Biol. 450, 43–52 (2018). https://doi.org/10.1016/j.jtbi.2018.04.028, Google ScholarCrossref, ISI
- 33. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, 1944). Google Scholar
- 34. D. Lu, F. Bauza, D. Soriano-Paños, J. Gómez-Gardeñes, and L. M. Floría, Phys. Rev. E 101, 022306 (2020). https://doi.org/10.1103/PhysRevE.101.022306, Google ScholarCrossref, ISI
- 35. J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattices (Cambridge University Press, 2005). Google Scholar
- 36. M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4, 1071 (1971). https://doi.org/10.1103/PhysRevA.4.1071, Google ScholarCrossref, ISI
- 37. L. Gauvin, J.-P. Nadal, and J. Vannimenus, Phys. Rev. E 81, 066120 (2010). https://doi.org/10.1103/PhysRevE.81.066120, Google ScholarCrossref, ISI
- 38. S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno, Europhys. Lett. 89, 38009 (2010). https://doi.org/10.1209/0295-5075/89/38009, Google ScholarCrossref
- 39. B. Guerra and J. Gómez-Gardeñes, Phys. Rev. E 82, 035101 (2010). https://doi.org/10.1103/PhysRevE.82.035101, Google ScholarCrossref, ISI
- 40. S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011). https://doi.org/10.1103/PhysRevE.84.036105, Google ScholarCrossref, ISI
- 41. X. Chen et al., New J. Phys. 20, 013007 (2018). https://doi.org/10.1088/1367-2630/aa9cda, Google ScholarCrossref, ISI
- 42. We do not include the impact of the intimidation since the corruption threshold does not depend on this parameter. Google Scholar
- 43. R. M. D’Souza, J. Gómez-Gardeñes, J. Nagler, and A. Arenas, Adv. Phys. 68, 123 (2019). https://doi.org/10.1080/00018732.2019.1650450, Google ScholarCrossref, ISI
- 44. H. Zhang, J. Zhang, C. Zou, M. Small, and B. Wang, New J. Phys. 12, 023015 (2010). https://doi.org/10.1088/1367-2630/12/2/023015, Google ScholarCrossref, ISI
- 45. D. Soriano-Paños, Q. Guo, V. Latora, and J. Gómez-Gardeñes, Phys. Rev. E 99, 062311 (2019). https://doi.org/10.1103/PhysRevE.99.062311, Google ScholarCrossref, ISI
- 46. H. V. Ribeiro, L. G. A. Alves, A. F. Martins, E. K. Lenzi, and M. Perc, J. Complex Netw. 6, 989 (2018). https://doi.org/10.1093/comnet/cny002, Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.