Abstract
We show that the Reeh–Schlieder property w.r.t. KMS states is a direct consequence of locality, additivity, and the relativistic KMS condition. The latter characterizes the thermal equilibrium states of a relativistic quantum field theory. The statement remains valid even if the given equilibrium state breaks spatial translation invariance.
REFERENCES
- 1. P. Junglas, Thermodynamisches Gleichgewicht und Energiespektrum in der Quantenfeldtheorie, Dissertation, Hamburg, 1987. Google Scholar
- 2. J. Brosand D. Buchholz, “Towards a relativistic KMS condition,” Nucl. Phys. B 429, 291–318 (1994). Google ScholarCrossref
- 3. C. D. Jäkel, “Decay of spatial correlations in thermal states,” Ann. Inst. Henri Poincare 69, 425–440 (1998). Google Scholar
- 4. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin–Heidelberg–New York, 1992). Google Scholar
- 5. S. Sakai, Operator Algebras in Dynamical Systems (Cambridge University Press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1991). Google Scholar
- 6. R. Haag, D. Kastler, and E. B. Trych-Pohlmeyer, “Stability and equilibrium states,” Commun. Math. Phys. 38, 173–193 (1974). Google ScholarCrossref
- 7. W. Puszand S. L. Woronowicz, “Passive states and KMS states for general quantum systems,” Commun. Math. Phys. 58, 273–290 (1978). Google ScholarCrossref
- 8. R. Haag, N. M. Hugenholtz, and M. Winnink, “On the equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5, 215–236 (1967). Google ScholarCrossref
- 9. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II (Springer-Verlag, New York–Heidelberg–Berlin, 1981). Google Scholar
- 10. D. Buchholzand P. Junglas, “On the existence of equilibrium states in local quantum field theory,” Commun. Math. Phys. 121, 255–270 (1989). Google ScholarCrossref
- 11. H. Narnhofer, “Kommutative Automorphismen und Gleichgewichtszustände,” Acta Phys. Austriaca 47, 1–29 (1977). Google Scholar
- 12. I. Ojima, “Lorentz Invariance vs. Temperature in QFT,” Lett. Math. Phys. 11, 73–80 (1986). Google ScholarCrossref
- 13. V. Glaser, “The positivity condition in momentum space,” in Problems in Theoretical Physics. Essays dedicated to N. N. Bogoliubov, edited by D. I. Bolkhintsev et al. (Moscow, Nauka, 1969). Google Scholar
- 14. V. Glaser, “On the equivalence of the Euclidean and Wightman formulation of field theory,” Commun. Math. Phys. 37, 257–272 (1974). Google ScholarCrossref
- 15. J. Bros, H. Epstein, and U. Moschella, “Analyticity properties and thermal effects for general quantum field theory on de Sitter space–time,” Commun. Math. Phys. 196, 535–570 (1998). Google ScholarCrossref
- 16. H. J. Borchersand D. Buchholz, “Global properties of vacuum states in de Sitter space,” Ann. Inst. Henri Poincare 70, 23–40 (1999). Google Scholar
- 17. J. Brosand D. Buchholz, “Axiomatic analyticity properties and representations of particles in thermal quantum field theory,” Ann. Inst. Henri Poincare 64, 495–521 (1996). Google Scholar
- © 2000 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

