Published Online: 21 March 2000
Accepted: September 1999
Journal of Mathematical Physics 41, 1745 (2000); https://doi.org/10.1063/1.533208
more...View Affiliations
  • Dipartimento di Matematica, Via della Ricerca Scientifica, Università di Roma “Tor Vergata,” I-00133 Roma
We show that the Reeh–Schlieder property w.r.t. KMS states is a direct consequence of locality, additivity, and the relativistic KMS condition. The latter characterizes the thermal equilibrium states of a relativistic quantum field theory. The statement remains valid even if the given equilibrium state breaks spatial translation invariance.
  1. 1. P. Junglas, Thermodynamisches Gleichgewicht und Energiespektrum in der Quantenfeldtheorie, Dissertation, Hamburg, 1987. Google Scholar
  2. 2. J. Brosand D. Buchholz, “Towards a relativistic KMS condition,” Nucl. Phys. B 429, 291–318 (1994). Google ScholarCrossref
  3. 3. C. D. Jäkel, “Decay of spatial correlations in thermal states,” Ann. Inst. Henri Poincare 69, 425–440 (1998). Google Scholar
  4. 4. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin–Heidelberg–New York, 1992). Google Scholar
  5. 5. S. Sakai, Operator Algebras in Dynamical Systems (Cambridge University Press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1991). Google Scholar
  6. 6. R. Haag, D. Kastler, and E. B. Trych-Pohlmeyer, “Stability and equilibrium states,” Commun. Math. Phys. 38, 173–193 (1974). Google ScholarCrossref
  7. 7. W. Puszand S. L. Woronowicz, “Passive states and KMS states for general quantum systems,” Commun. Math. Phys. 58, 273–290 (1978). Google ScholarCrossref
  8. 8. R. Haag, N. M. Hugenholtz, and M. Winnink, “On the equilibrium states in quantum statistical mechanics,” Commun. Math. Phys. 5, 215–236 (1967). Google ScholarCrossref
  9. 9. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II (Springer-Verlag, New York–Heidelberg–Berlin, 1981). Google Scholar
  10. 10. D. Buchholzand P. Junglas, “On the existence of equilibrium states in local quantum field theory,” Commun. Math. Phys. 121, 255–270 (1989). Google ScholarCrossref
  11. 11. H. Narnhofer, “Kommutative Automorphismen und Gleichgewichtszustände,” Acta Phys. Austriaca 47, 1–29 (1977). Google Scholar
  12. 12. I. Ojima, “Lorentz Invariance vs. Temperature in QFT,” Lett. Math. Phys. 11, 73–80 (1986). Google ScholarCrossref
  13. 13. V. Glaser, “The positivity condition in momentum space,” in Problems in Theoretical Physics. Essays dedicated to N. N. Bogoliubov, edited by D. I. Bolkhintsev et al. (Moscow, Nauka, 1969). Google Scholar
  14. 14. V. Glaser, “On the equivalence of the Euclidean and Wightman formulation of field theory,” Commun. Math. Phys. 37, 257–272 (1974). Google ScholarCrossref
  15. 15. J. Bros, H. Epstein, and U. Moschella, “Analyticity properties and thermal effects for general quantum field theory on de Sitter space–time,” Commun. Math. Phys. 196, 535–570 (1998). Google ScholarCrossref
  16. 16. H. J. Borchersand D. Buchholz, “Global properties of vacuum states in de Sitter space,” Ann. Inst. Henri Poincare 70, 23–40 (1999). Google Scholar
  17. 17. J. Brosand D. Buchholz, “Axiomatic analyticity properties and representations of particles in thermal quantum field theory,” Ann. Inst. Henri Poincare 64, 495–521 (1996). Google Scholar
  18. © 2000 American Institute of Physics.