Published Online: 04 June 1998
Accepted: June 1997
Journal of Mathematical Physics 38, 6126 (1997); https://doi.org/10.1063/1.532206
more...
A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh–Schrödinger series is Borel resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of “multi-instanton expansions.”
  1. 1. R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic Press, Oxford, 1973). Google Scholar
  2. 2. C. M. Bender and T. T. Wu, “Anharmonic oscillator,” Phys. Rev. 184, 1231–1260 (1969). Google ScholarCrossref
  3. 3. R. Balian and C. Bloch, “Distribution of eigenfrequencies for the wave equation in a finite domain,” Ann. Phys. (N. Y.) 60, 401–447 (1970); Google ScholarCrossref
    R. Balian and C. Bloch, 64, 271–307 (1971); , Ann. Phys. (N.Y.) , Google ScholarCrossref
    R. Balian and C. Bloch, 69, 76–160 (1972)., Ann. Phys. (N.Y.) , Google ScholarCrossref
  4. 4. R. Balian and C. Bloch, “Asymptotic evaluation of the Green’s function for large Quantum numbers,” Ann. Phys. (N. Y.) 63, 592–606 (1971). Google ScholarCrossref
  5. 5. R. Balian and C. Bloch, “Solution of the Schrödinger equation in terms of classical paths,” Ann. Phys. (N. Y.) 85, 514–545 (1974). Google ScholarCrossref
  6. 6. A. Voros, “The return of the quartic oscillator: The complex WKB method,” Ann. Inst. H. Poincaré Phys. Theor. 39, 211–338 (1983). Google Scholar
  7. 7. A. Voros, “Résurgence quantique,” Ann. Inst. Fourier 43, 1509–1534 (1993). Google ScholarCrossref
  8. 8. J. Ecalle, “Cinq applications des fonctions résurgentes,” Publ. Math. D’Orsay, Université Paris-Sud, 84T 62, Orsay. Google Scholar
  9. 9. J. Ecalle, “Weighted products and parametric resurgence,” Analyse Algébrique des Perturbations Singulières I: Méthodes Résurgentes Travaux en Cours (Hermann, Paris, 1994), pp. 7–49. Google Scholar
  10. 10. E. Delabaere, H. Dillinger, and F. Pham, “Développements semi-classiques exacts des niveaux d’énergie d’un oscillateur á une dimension,” C. R. Acad. Sci. Paris Ser. I, 310, 141–146 (1990). Google Scholar
  11. 11. E. Delabaere, H. Dillinger, and F. Pham, “Résurgence de Voros et périodes des courbes hyperelliptiques,” Ann. Inst. Fourier, Tome 43, Fascicule 1, 163–199 (1993). Google Scholar
  12. 12. E. Delabaere and F. Pham, “Resurgent methods in semi-classical asymptotics,” To appear in Ann. Inst. H. Poincaré Phys. Théor. Google Scholar
  13. 13. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 1989). Google Scholar
  14. 14. J. Zinn-Justin, “From instantons to exact results,” in Ref. 9, pp. 51–68. Google Scholar
  15. 15. C. M. Bender and T. T. Wu, “Anharmonic oscillator. II. A study of perturbation theory in large order,” Phys. Rev. D 7, 1620–1636 (1973). Google ScholarCrossref
  16. 16. P. E. Shanley, “Spectral properties of the scaled quartic anharmonic oscillator,” Ann. Phys. (N. Y.) 186, 292–324 (1988). Google ScholarCrossref
  17. 17. P. E. Shanley, “Nodal properties of the scaled quartic anharmonic oscillator,” Ann. Phys. (N. Y.) 186, 325–354 (1988). Google ScholarCrossref
  18. 18. E. Delabaere and F. Pham, “Unfolding the quartic oscillator,” to appear in Ann. Phys. Google Scholar
  19. 19. J. Ecalle, “Les fonctions résurgentes,” Publ. Math. D’Orsay, Université Paris-Sud, 1981.05, 1981.06, 1985.05. Google Scholar
  20. 20. B. Candelpergher, “Une introduction á la résurgence,” Gazette des Mathématiciens, (Soc. Math. France), 1989, No. 42. Google Scholar
  21. 21. B. Candelpergher, C. Nosmas, and F. Pham, “Premiers pas en calcul étranger,” Ann. Inst. Fourier 1, 201–224 (1993). Google ScholarCrossref
  22. 22. B. Candelpergher, C. Nosmas, and F. Pham, Approche de la Résurgence (Hermann, Paris, 1993). Google Scholar
  23. 23. B. Sternin and V. Shatalov, Borel-Laplace Transform and Asymptotic Theory (CRC Press, Boca Raton, FL, 1996). Google Scholar
  24. 24. M. V. Berry and C. J. Howls, “Hyperasymptotics,” Proc. R. Soc. London, Ser. A 430, 653–668 (1990). Google ScholarCrossref
  25. 25. M. V. Berry and C. J. Howls, “Hyperasymptotics for integrals with saddles,” Proc. R. Soc. London, Ser. A 434, 657–675 (1991). Google ScholarCrossref
  26. 26. M. V. Berry and C. J. Howls, “Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality,” Proc. R. Soc. London, Ser. A 443, 107–126 (1993). Google ScholarCrossref
  27. 27. C. M. Bender and St. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978). Google Scholar
  28. 28. N. Fröman and P. O. Fröman, “Phase-integral approximation of arbitrary order generated from an unspecified base function,” Forty More Years of Ramifications: Spectral Asymptotics and its Applications, No. 1, Department of Mathematics, Texas A&M University, College Station, Texas, 1991, pp. 121–159. Google Scholar
  29. 29. T. Aoki, T. Kawai, and Y. Takei, The Bender-Wu Analysis and the Voros Theory, ICM-90 Satellite Conference Proceedings, Special functions (Springer-Verlag, Berlin, 1991), pp. 1–29. Google Scholar
  30. 30. T. Aoki, T. Kawai, and Y. Takei, “Algebraic analysis of singular perturbations—On exact WKB analysis,” Sugaku Expo. 8, 217–240 (1995). Google Scholar
  31. 31. M. A. Evgrafov and M. V. Fedoryuk, “Asymptotic behaviour as λ→∞ of the solution of the equation w”(z)−p“z,λ”w(z) = 0 in the complex plane,” Russ. Math. Surveys 21, 1–48 (1966). Google ScholarCrossref
  32. 32. Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient (North-Holland, Amsterdam, 1975). Google Scholar
  33. 33. A. O. Jidoumou, “Modéles de Résurgence paramétrique (fonctions d’Airy et cylindro-paraboliques),” J. Math. Pures Appl. 73, 111–190 (1994). Google Scholar
  34. 34. F. Pham, Resurgence, Quantized Canonical Transformations, and Multi-Instanton Expansions, Algebraic Analysis (papers dedicated to M. Sato), (Academic, New York, 1988), pp. 699–726. Google Scholar
  35. 35. F. Pham, “Résurgence d’un thème de Huygens-Fresnel,” Publ. Math. IHES 68 (Vol. en l’honneur de R. Thom), 77–90 (1988) Google Scholar
  36. 36. T. Kawai and Y. Takei, “Secular equations through the exact WKB analysis,” in Ref. 9, pp. 85–102. Google Scholar
  37. 37. F. Pham, “Fonctions résurgentes implicites,” C. R. Acad. Sci. Paris ’t.309, Sér. I, 999–1001 (1989). Google Scholar
  38. 38. A. Voros, “Wentzel-Kramers-Brillouin method in the Bargmann representation,” Phys. Rev. A 40, 6814–6825 (1989). Google ScholarCrossref
  39. 39. E. Harrel and B. Simon, “The mathematical theory of resonances whose widths are exponentially small,” Duke Math. J. 47, 845 (1980). Google Scholar
  40. 40. B. Simon, “Large orders and summability of eigenvalue perturbation theory: A mathematical overview,” Int. J. Quantum Chem. XXI, 3–25 (1982). Google ScholarCrossref
  41. 41. B. Simon, “Coupling constant analyticity for the anharmonic oscillator,” Ann. Phys. (N. Y.) 58, 76–136 (1970). Google ScholarCrossref
  42. 42. J. Thomann, “Resommation des séries formelles,” Numer. Math. 58, 503–535 (1990). Google ScholarCrossref
  43. 43. Zinn-Justin, “The principles of instanton calculus: A few applications,” Recent Advances in Field Theory and Statistical Mechanics, Les Houches, Session XXXIX, 1982 (North-Holland, Amsterdam, 1984). Google Scholar
  44. 44. J. Zinn-Justin, “Multi-instanton contributions in Quantum Mechanics (II),” Nucl. Phys. B 218, 333–348 (1983). Google ScholarCrossref
  45. 45. J. Zinn-Justin, “Instantons in Quantum Mechanics: Numerical evidence for a conjecture,” J. Math. Phys. 25, 549–555 (1984). Google ScholarScitation
  46. © 1997 American Institute of Physics.