Abstract
A systematic study of additive isometries on a quaternionic Hilbert space is presented. A number of new results describing the properties of such operators are proved. The work culminates in the first mathematical proof of Wigner’s theorem for quaternionic Hilbert spaces of dimension other than 2 which asserts that any operator which preserves the absolute value of the inner product on a quaternionic Hilbert space is equivalent, in the sense of differing pointwise by a mere phase factor, to a linear isometry. A complete and concise description of the exceptional situation in a two‐dimensional quaternionic Hilbert space is given.
REFERENCES
- 1. C. S. Sharma and T. J. Coulson, J. Math. Phys. 28, 1941 (1987). Google ScholarScitation
- 2. C. S. Sharma, J. Math. Phys. 29, 1069 (1988). Google ScholarScitation
- 3. C. S. Sharma and D. F. Almeida, J. Math. Phys. 30, 369 (1989). Google ScholarScitation
- 4. M. D. Vivarelli, Celestial Mech. 29, 45 (1983); Google ScholarCrossref
M. D. Vivarelli, 36, 45 (1985)., Celest. Mech. , Google ScholarCrossref - 5. L. P. Horwitz and L. C. Biedenharn, Ann. Phys. (NY) 157, 432 (1984); Google ScholarCrossref
A. Razon, L. P. Horwitz, and L. C. Biedenharn, J. Math. Phys. 30, 59 (1989). , Google ScholarScitation - 6. S. Adler, Commun. Math. Phys. 104, 611 (1986). Google ScholarCrossref
- 7. E. Y. Rocher, J. Math. Phys. 13, 1919 (1972). Google ScholarScitation
- 8. C. S. Sharma, Nuovo Cimento B 103, 431 (1989). Google ScholarCrossref
- 9. V. Bargmann, J. Math. Phys. 5, 862 (1964). Google ScholarScitation
- 10. C. S. Sharma and D. F. Almeida, Ann. Phys. (NY) 197, 300 (1990). Google ScholarCrossref
- 11. T. J. Coulson, Ph.D. thesis, London University, 1986. Google Scholar
- 12. E. P. Wigner, Group Theory (Academic, New York, 1959). Google Scholar
- 13. J. Pian and C. S. Sharma, Int. J. Theor. Phys. 22, 107 (1983). Google ScholarCrossref
- 14. P. M. Cohn, Algebra I (Wiley, Chichester, 1982). Google Scholar
- 15. W. Rudin, Functional Analysis (McGraw‐Hill, New York, 1973). Google Scholar
- 16. T. W. Hungerford, Algebra (Holt, Rinehart, and Winston, New York, 1974). Google Scholar
- © 1990 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

