Published Online: 04 June 1998
Accepted: December 1989
Journal of Mathematical Physics 31, 1035 (1990); https://doi.org/10.1063/1.528779
more...View Affiliations
  • Mathematical Research Unit, University of London, Birkbeck College, 43 Gordon Square, London, WC1H 0PD, England
A systematic study of additive isometries on a quaternionic Hilbert space is presented. A number of new results describing the properties of such operators are proved. The work culminates in the first mathematical proof of Wigner’s theorem for quaternionic Hilbert spaces of dimension other than 2 which asserts that any operator which preserves the absolute value of the inner product on a quaternionic Hilbert space is equivalent, in the sense of differing pointwise by a mere phase factor, to a linear isometry. A complete and concise description of the exceptional situation in a two‐dimensional quaternionic Hilbert space is given.
  1. 1. C. S. Sharma and T. J. Coulson, J. Math. Phys. 28, 1941 (1987). Google ScholarScitation
  2. 2. C. S. Sharma, J. Math. Phys. 29, 1069 (1988). Google ScholarScitation
  3. 3. C. S. Sharma and D. F. Almeida, J. Math. Phys. 30, 369 (1989). Google ScholarScitation
  4. 4. M. D. Vivarelli, Celestial Mech. 29, 45 (1983); Google ScholarCrossref
    M. D. Vivarelli, 36, 45 (1985)., Celest. Mech. , Google ScholarCrossref
  5. 5. L. P. Horwitz and L. C. Biedenharn, Ann. Phys. (NY) 157, 432 (1984); Google ScholarCrossref
    A. Razon, L. P. Horwitz, and L. C. Biedenharn, J. Math. Phys. 30, 59 (1989). , Google ScholarScitation
  6. 6. S. Adler, Commun. Math. Phys. 104, 611 (1986). Google ScholarCrossref
  7. 7. E. Y. Rocher, J. Math. Phys. 13, 1919 (1972). Google ScholarScitation
  8. 8. C. S. Sharma, Nuovo Cimento B 103, 431 (1989). Google ScholarCrossref
  9. 9. V. Bargmann, J. Math. Phys. 5, 862 (1964). Google ScholarScitation
  10. 10. C. S. Sharma and D. F. Almeida, Ann. Phys. (NY) 197, 300 (1990). Google ScholarCrossref
  11. 11. T. J. Coulson, Ph.D. thesis, London University, 1986. Google Scholar
  12. 12. E. P. Wigner, Group Theory (Academic, New York, 1959). Google Scholar
  13. 13. J. Pian and C. S. Sharma, Int. J. Theor. Phys. 22, 107 (1983). Google ScholarCrossref
  14. 14. P. M. Cohn, Algebra I (Wiley, Chichester, 1982). Google Scholar
  15. 15. W. Rudin, Functional Analysis (McGraw‐Hill, New York, 1973). Google Scholar
  16. 16. T. W. Hungerford, Algebra (Holt, Rinehart, and Winston, New York, 1974). Google Scholar
  17. © 1990 American Institute of Physics.