Abstract
A unified approach based on Bethe ansatz in a large variety of integrable models in quantum optics is given. Second harmonics generation, three‐boson interaction, the Dicke model, and some cases of four‐boson interaction as special cases of su(2)⊕su(1,1)‐Gaudin models are included.
REFERENCES
- 1. M. Gaudin, Note CEA 1559, 1 (1972); Google Scholar
M. Gaudin, CEN‐Saclay 1559, 2 (1973). Google Scholar - 2. E. K. Sklyanin, Zap. Nauchn. Sem. LOMI 164, 151 (1987). Google Scholar
- 3. B. Jurčo, J. Math. Phys. 30, 1289 (1989). Google ScholarScitation
- 4. P. P. Kulish and E. K. Sklyanin, Lect. Notes Phys. 15, 61 (1982). Google ScholarCrossref
- 5. M. Gaudin, J. Phys. (Paris) 37, 1087 (1976). Google ScholarCrossref
- 6. M. Gaudin, La Fonction d’Onde de Bethe (Commissariat à l’Energie Atomique, Paris, 1983). Google Scholar
- 7. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel, Dordrecht, 1984). Google Scholar
- 8. S. Stenholm, Phys. Rep. 60, 1 (1973). Google ScholarCrossref
- 9. H. P. Yuen and J. H. Shapiro, Opt. Lett. 4, 334 (1979). Google ScholarCrossref
- 10. V. E. Korepin, Commun. Math. Phys. 86, 391 (1982). Google ScholarCrossref
- 11. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., New York, 1959). Google Scholar
- 12. E. K. Sklyanin, Lect. Notes Phys. 226, 196 (1985). Google ScholarCrossref
- © 1989 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

