Published Online: 04 June 1998
Journal of Mathematical Physics 23, 1668 (1982); https://doi.org/10.1063/1.525552
more...View Affiliations
  • Blackett Laboratory, Imperial College, London SW7 2BZ, England
We study the canonical vacuum structure of Yang–Mills theories defined on an arbitrary (nonsimply connected) three‐space. We find that the presence of flat Yang–Mills connections with a nontrivial (discrete) holonomy group has profound consequences at the quantum level. In particular, such connections may lead to either an increase or a decrease in the number of quantum vacuum sectors. Our method consists of finding a representation for the space of classical zero‐energy field configurations in terms of a function space D. A simple assumption concerning the physical equivalence of these classical configurations then permits a formal classification of the quantum vacua by the zeroth homotopy set π0(D). Significant progress is made in the analysis of π0(D) for arbitrary three‐spaces and gauge groups, and several specific questions concerning the vacuum states and their diagonalization are answered.
  1. 1. Proceedings of the 1980 Cambridge Workshop in Supergravity (Cambridge U.P., Cambridge, England, 1981). Google Scholar
  2. 2. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976); Google ScholarCrossref
    C. G. Callen, R. F. Dashen, and D. T. Gross, Phys. Lett. B 63, 334 (1976). , Google ScholarCrossref
  3. 3. N. Steenrod, The Topology of Fiber Bundles (Princeton U.P., Princeton, N.J., 1951). Google Scholar
  4. 4. S. J. Avis and C. J. Isham, in Recent Developments in Gravitation—Cargese 1978, edited by M. Levy and S. Deser (Plenum, New York, 1979). Google Scholar
  5. 5. The effects of holonomy on gauge theories has been discussed in a different context: M. Asorey, J. Math. Phys. 22, 179 (1981). Google ScholarScitation
  6. 6. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I (Interscience, New York, 1963). Google Scholar
  7. 7. C. J. Isham, in Essays in honour of Wolfgang Yourgrau, edited by A. van der Merwe (Plenum, New York, to appear in 1981). Google Scholar
  8. 8. C. J. Isham and G. Kuntstatter, “Yang‐Mills canonical vacuum structure in a general three‐space,” Phys. Lett. B 102, 417 (1981). Google ScholarCrossref
  9. 9. J. W. Milnor, Commun. Math. Helv. 32, 215 (1957). Google ScholarCrossref
  10. 10. F. Kamber and P. Tondeur, Lecture Notes in Mathematics, Vol. 67 (Springer, New York, 1968). Google Scholar
  11. 11. A. Weil, Ann. Math. 72, 369 (1960). Google ScholarCrossref
  12. 12. V. N. Gribov, Nucl. Phys. B 139, 1 (1978). Google ScholarCrossref
  13. 13. I. Singer, Commun. Math. Phys. 60, 7 (1978). Google ScholarCrossref
  14. 14. P. K. Mitter and C. M. Viallet, “On the bundle of connections and the gauge orbit manifold in Yang‐Mills theory,” CNRS preprint (1979). Google Scholar
  15. 15. H. J. Baues, Lecture Notes in Mathematics, Vol. 28 (Springer, New York, 1977). Google Scholar
  16. 16. See for example R. Rajaraman, Phys. Rep. 21, 227 (1975). Google ScholarCrossref
  17. 17. J. Hempel,3‐manifolds (Princeton University, New Jersey, 1976). Google Scholar
  18. 18. J. Dugundje, Topology (Allyn and Bacon, Boston, 1966). Google Scholar
  19. 19. F. Kamber and P. Tondeur, Am. J. Math. 89, 857 (1967). Google ScholarCrossref
  20. 20. R. M. Switzer, Algebraic Topology‐Homotopy and Homology (Springer, New York, 1975). Google Scholar
  21. 21. B. Grey, Homotopy Theory (Academic, New York, 1975). Google Scholar
  22. 22. E. H. Spanier, Algebraic Topology (McGraw‐Hill, New York, 1967). Google Scholar
  23. 23. A. Borel, Lecture Notes in Mathematics, Vol. 36 (Springer, New York, 1967). Google Scholar
  24. 24. D. Epstein, Quart. Math. Oxford 12, 205 (1961). Google ScholarCrossref
  25. 25. C. Thomas, Proc. Cambridge Philos. Soc. 64, 303 (1968). Google ScholarCrossref
  26. 26. B. Evans and L. Moser, Trans. Am. Math. Soc. 168, 189 (1972). Google Scholar
  27. 27. J. T. Schwarz, Differential Geometry and Topology (Gordon and Breach, New York, 1968). Google Scholar
  28. 28. J. R. Munkres, Elementary Differential Topology (Princeton U.P., Princeton, N. J, 1966). Google Scholar
  29. 29. R. Palais, Foundations of Global Nonlinear Analysis (Benjamin, New York, 1968). Google Scholar
  30. 30. T. Husain, Introduction to Topological Groups (Saunders, Philadelphia, 1966). Google Scholar
  31. © 1982 American Institute of Physics.