Abstract
We study the canonical vacuum structure of Yang–Mills theories defined on an arbitrary (nonsimply connected) three‐space. We find that the presence of flat Yang–Mills connections with a nontrivial (discrete) holonomy group has profound consequences at the quantum level. In particular, such connections may lead to either an increase or a decrease in the number of quantum vacuum sectors. Our method consists of finding a representation for the space of classical zero‐energy field configurations in terms of a function space D . A simple assumption concerning the physical equivalence of these classical configurations then permits a formal classification of the quantum vacua by the zeroth homotopy set π0(D ). Significant progress is made in the analysis of π0(D ) for arbitrary three‐spaces and gauge groups, and several specific questions concerning the vacuum states and their diagonalization are answered.
REFERENCES
- 1. Proceedings of the 1980 Cambridge Workshop in Supergravity (Cambridge U.P., Cambridge, England, 1981). Google Scholar
- 2. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976); Google ScholarCrossref
C. G. Callen, R. F. Dashen, and D. T. Gross, Phys. Lett. B 63, 334 (1976). , Google ScholarCrossref - 3. N. Steenrod, The Topology of Fiber Bundles (Princeton U.P., Princeton, N.J., 1951). Google Scholar
- 4. S. J. Avis and C. J. Isham, in Recent Developments in Gravitation—Cargese 1978, edited by M. Levy and S. Deser (Plenum, New York, 1979). Google Scholar
- 5. The effects of holonomy on gauge theories has been discussed in a different context: M. Asorey, J. Math. Phys. 22, 179 (1981). Google ScholarScitation
- 6. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I (Interscience, New York, 1963). Google Scholar
- 7. C. J. Isham, in Essays in honour of Wolfgang Yourgrau, edited by A. van der Merwe (Plenum, New York, to appear in 1981). Google Scholar
- 8. C. J. Isham and G. Kuntstatter, “Yang‐Mills canonical vacuum structure in a general three‐space,” Phys. Lett. B 102, 417 (1981). Google ScholarCrossref
- 9. J. W. Milnor, Commun. Math. Helv. 32, 215 (1957). Google ScholarCrossref
- 10. F. Kamber and P. Tondeur, Lecture Notes in Mathematics, Vol. 67 (Springer, New York, 1968). Google Scholar
- 11. A. Weil, Ann. Math. 72, 369 (1960). Google ScholarCrossref
- 12. V. N. Gribov, Nucl. Phys. B 139, 1 (1978). Google ScholarCrossref
- 13. I. Singer, Commun. Math. Phys. 60, 7 (1978). Google ScholarCrossref
- 14. P. K. Mitter and C. M. Viallet, “On the bundle of connections and the gauge orbit manifold in Yang‐Mills theory,” CNRS preprint (1979). Google Scholar
- 15. H. J. Baues, Lecture Notes in Mathematics, Vol. 28 (Springer, New York, 1977). Google Scholar
- 16. See for example R. Rajaraman, Phys. Rep. 21, 227 (1975). Google ScholarCrossref
- 17. J. Hempel,3‐manifolds (Princeton University, New Jersey, 1976). Google Scholar
- 18. J. Dugundje, Topology (Allyn and Bacon, Boston, 1966). Google Scholar
- 19. F. Kamber and P. Tondeur, Am. J. Math. 89, 857 (1967). Google ScholarCrossref
- 20. R. M. Switzer, Algebraic Topology‐Homotopy and Homology (Springer, New York, 1975). Google Scholar
- 21. B. Grey, Homotopy Theory (Academic, New York, 1975). Google Scholar
- 22. E. H. Spanier, Algebraic Topology (McGraw‐Hill, New York, 1967). Google Scholar
- 23. A. Borel, Lecture Notes in Mathematics, Vol. 36 (Springer, New York, 1967). Google Scholar
- 24. D. Epstein, Quart. Math. Oxford 12, 205 (1961). Google ScholarCrossref
- 25. C. Thomas, Proc. Cambridge Philos. Soc. 64, 303 (1968). Google ScholarCrossref
- 26. B. Evans and L. Moser, Trans. Am. Math. Soc. 168, 189 (1972). Google Scholar
- 27. J. T. Schwarz, Differential Geometry and Topology (Gordon and Breach, New York, 1968). Google Scholar
- 28. J. R. Munkres, Elementary Differential Topology (Princeton U.P., Princeton, N. J, 1966). Google Scholar
- 29. R. Palais, Foundations of Global Nonlinear Analysis (Benjamin, New York, 1968). Google Scholar
- 30. T. Husain, Introduction to Topological Groups (Saunders, Philadelphia, 1966). Google Scholar
- © 1982 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

