No Access Submitted: 15 December 1981 Accepted: 26 March 1982 Published Online: 04 June 1998
J. Math. Phys. 23, 1806 (1982); https://doi.org/10.1063/1.525234
more...View Contributors
  • Ingrid Daubechies
  • John R. Klauder
The overcompleteness of the coherent states for the Heisenberg–Weyl group implies that many different integral kernels can be used to represent the same operator. Within such an equivalence class we construct an integral kernel to represent the quantum‐mechanical evolution operator for certain dynamical systems in the form of a path integral that involves genuine (Wiener) measures on continuous phase‐space paths. To achieve this goal it is necessary to employ an expression for the classical action different from the usual one.
  1. 1. See, e.g., J. R. Klauder, Acta Phys. Austriaca, Suppl. XXII, 3 (1980). Google Scholar
  2. 2. S. Albeverio and R. Ho/egh‐Kröhn, Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, No. 523 (Springer, Berlin, 1976). Google Scholar
  3. 3. Ph. Combe, R. Ho/egh‐Kröhn, R. Rodrigues, M. Sirugue, and M. Sirugue‐Collin, Commun. Math. Phys. 77, 269 (1980); Google ScholarCrossref
    Ph. Combe, R. Ho/egh‐Kröhn, R. Rodrigues, M. Sirugue, and M. Sirugue‐Collin, J. Math. Phys. 23, 405 (1982); , Google ScholarScitation
    see also Proceedings of the International Workshop “Functional Integration: Theory and Applications,” edited by J. P. Antoine and E. Tirapegui (Plenum, New York, 1980). , Google Scholar
  4. 4. J. R. Klauder and I. Daubechies, Phys. Rev. Lett. 48, 117 (1982); Google ScholarCrossref
    see also “Wiener Measures for Quantum Mechanical Path Integrals,” in Proceedings of the International Workshop Stochastic Processes in Quantum Theory and Statistical Physics: Recent Progress and Applications, Lecture Notes in Physics (Springer, New York) (to be published). , Google Scholar
  5. 5. See, e.g., J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968), Chap. 7. Google Scholar
  6. 6. J. McKenna and J. R. Klauder, J. Math. Phys. 5, 878 (1964). Google ScholarScitation, ISI
  7. 7. See, e.g., B. Simon, Functional Integration and Quantum Mechanics, (Academic, New York, 1979). Google Scholar
  8. 8. D. Kastler, Commun. Math. Phys. 1, 14 (1965). Google ScholarCrossref
  9. 9. A. Grossmann, Commun. Math. Phys. 48, 191 (1976). Google ScholarCrossref, ISI
  10. 10. J. R. Klauder, “Constructing measures for spin‐variable path integrals,” J. Math. Phys. 23, 1797 (1982). Google ScholarScitation
  1. © 1982 American Institute of Physics.