Published Online: 26 August 2008
Journal of Mathematical Physics 18, 2511 (1977); https://doi.org/10.1063/1.523215
more...View Affiliations
  • Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., 14−740, México
Within the spinorial version of the Cartan structure formulas with the built‐in (complex) Einstein vacuum equations some closed semi‐Einsteinian substructures are isolated and discussed. Then the idea of semigraviton is introduced, and its relationship to Penrose’s nonlinear graviton is described.
  1. 1. J. F. Plebański and A. Schild, Nuovo Cimento 35B, 35–53 (1976). Google ScholarCrossref
  2. 2. J. F. Plebański, J. Math. Phys. 16, 2395 (1975). Google ScholarScitation
  3. 3. J. F. Plebański and S. Hacyan, J. Math. Phys. 16, 2403 (1975). Google ScholarScitation
  4. 4. J. D. Finley, III and J. F. Plebański, J. Math. Phys. 17, 585 (1976). Google ScholarScitation
  5. 5. S. Hacyan and J. F. Plebański, J. Math. Phys. 17, 2203 (1976). Google ScholarScitation
  6. 6. C. P. Boyer and J. F. Plebański, J. Math. Phys. 18, 1022 (1977). Google ScholarScitation
  7. 7. E. T. Newman, in Proceedings of GR7 Conference, Tel Aviv, 1974. Google Scholar
  8. 8. C. W. Fette, Allen I. Janis, and E. T. Newman, J. Math. Phys. 17, 660 (1976). Google ScholarScitation
  9. 9. E. T. Newman, In Proceedings of ASST Conf., Cincinnati, June 1976, edited by L. Witten (Plenum, New York, 1977), p. 229. Google Scholar
  10. 10. This is of course, not the most general gauge group: The most general gauge transformations, G̃, contain in addition to (1.17): (i) the antilinear spinorial transformations which map the dotted spinors into undotted and vice versa; they correspond to the improper null tetrad transformations (gAḂ)→(gAḂ)T with the determinant equal to minus one; these transformations are allowed if the orientation of M remains undetermined, and (ii) the dilatations of undotted spinors by say λ≠0, compensated by the dilatations of the dotted spinors by λ−1. This group component, however, does not act effectively on the fundamental objects gAB. Google Scholar
  11. 11.6−1 = 5” is to be understood on the basis of the fact that (16c) can be interpreted as 3SAB∧SCD = ρδ(CAδD)B, with ρ to be determined. Then, SAB∧SCD = SCD∧SAB implies that we end up with 6−1 = 5 of the effective conditions on SAB. Google Scholar
  12. 12. A. Tomimatsu and H. Sato, Progr. Theor. Phys. 50, 95 (1973). Google ScholarCrossref
  13. 13. M. Yamazaki, Kanazawa Univ. Preprint, 1976. Google Scholar
  14. 14. F. Ernst, J. Math. Phys. 17, 1091 (1976). Google ScholarScitation
  15. 15. R. Penrose, a talk at the “Riddle of Gravity” symposium in honor of P. G. Bergmann’s 60th birthday, in Syracuse, March 1975. Google Scholar
  16. 16. R. Penrose, “Non‐Linear Gravitation,” First Award Gravity Foundation Essay (1975) and Gen. Rel. Grav. 7, 31 (1976). Google ScholarCrossref
  17. 17. I. Robinson, King’s College Lectures, unpublished (1956). Google Scholar
  18. 18. J. F. Plebański and I. Robinson, Phys. Rev. Lett. 37, 493 (1976). Google ScholarCrossref
  19. 19. J. F. Plebański and I. Robinson, in Proceedings of Symposium on Asymptotic Structures of Space—Time, Cincinnati, June 1977, Edited by F. Eposito and L. Witten (Plenum, New York, 1977), p. 361 , Google Scholar
    and in Proceedings of V‐e Colloque Int. de Theorie de Groups, Montreal, July 1976, edited by R. Sharp (Academic, New York, 1977). Google Scholar
  20. 20. A. García, J. F. Plebański, and I. Robinson, “Null Strings and Complex Einstein—Maxwell Fields with λ,” to be published in Gen. Rel. Grav. Google Scholar
  21. 21. J. D. Finley, III and J. F. Plebański, J. Math. Phys. 17, 2207 (1976). Google ScholarScitation
  22. 22. A. García and J. F. Plebański, “Seven Parameter Type Metric in Canonical Coordinates,” to be published in Nuovo Cimento. Google Scholar
  23. 23. J. D. Finley, III and J. F. Plebański, “Spinorial structures and electromagnetic hyperheavens,” J. Math. Phys. 18, 1662 (1977). Google ScholarScitation
  24. 24. For the general theory of the real slices of the complex V4s see thesis of K. Rózga, IFT, Hoźa 69, University of Warsaw, Real Slices of Complex Riemannian Spaces.”, Google Scholar
  25. 25.With M real,
    gcAḂ
    and
    giAḂ
    can be chosen Hermitian; thus, the concept of a real “time” is meaningful—although uncorrelated—in SH and SE in the case of a real structure.
  26. 26. F. J. Ernst, Phys. Rev. 168, 1415 (1968), Google ScholarCrossref
    F. J. Ernst, J. Math. Phys. 15, 1409 (1974). , Google ScholarScitation
  27. 27. F. Ernst and J. F. Plebański, “Killing Structures and Complex E‐Potentials” to be published in Ann. Phys. (Oct., 1977). Google Scholar
  28. 28. W. Kinnersley, J. Math. Phys. 14, 651 (1973). Google ScholarScitation
  29. 29. W. Kinnersley, J. Math. Phys. 18, 1529 (1977). Google ScholarScitation
  30. 30. M. Walker and R. Penrose, Commun. Math. Phys. 18, 265 (1970). Google ScholarCrossref
  31. 31. S. Hacyan and J. F. Plebański, “D(1,0) Killing structures and E potentials,” J. Math. Phys. 18, 1517 (1977). Google ScholarScitation
  32. 32. A suggestion in this direction by Dr. Frederick J. Ernst is gratefully appreciated. Google Scholar
  33. © 1977 American Institute of Physics.