No Access Submitted: 15 December 2019 Accepted: 20 January 2020 Published Online: 04 February 2020
J. Chem. Phys. 152, 054905 (2020); https://doi.org/10.1063/1.5142609
more...View Affiliations
View Contributors
  • Jianli Zhang
  • Yuanxing Zhang
  • Michael A. Bevan
A method is reported to determine equilibrium concentration profiles and local phase behavior of colloids on multi-dimensional energy landscapes. A general expression is derived based on local particle concentration and osmotic pressure differences that are balanced by forces on colloids due to energy landscape gradients. This analysis is applied to colloidal particles in high frequency AC electric fields within octupolar electrodes, where the energy landscape can be shaped in two dimensions. These results are also directly applicable to any particles having induced dipoles in spatially non-uniform electromagnetic fields. Predictions based on modeling colloids with an effective hard disk equation of state indicate inhomogeneous solid and fluid states coexisting on different shaped energy landscapes including multiple minima. Model predictions show excellent agreement with time-averaged Brownian dynamic simulations at equilibrium. Findings demonstrate a general approach to understand colloidal phase behavior on energy landscapes due to external fields, which could enable control of colloidal microstructures on morphing energy landscapes and the inverse design of fields to assemble hierarchically structured colloidal materials.
We acknowledge financial support by the Department of Energy (BES Grant No. DE-SC0017892) and the preliminary work under NSF, Grant No. 1562579.
  1. 1. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989). Google ScholarCrossref
  2. 2. J. L. Anderson, Annu. Rev. Fluid Mech. 21, 61–99 (1989). https://doi.org/10.1146/annurev.fl.21.010189.000425, Google ScholarCrossref
  3. 3. H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Philadelphia, PA, 2003). Google Scholar
  4. 4. J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, ACS Nano 5(1), 217–226 (2011). https://doi.org/10.1021/nn102383s, Google ScholarCrossref
  5. 5. T. Biben, J.-P. Hansen, and J.-L. Barrat, J. Chem. Phys. 98(9), 7330–7344 (1993). https://doi.org/10.1063/1.464726, Google ScholarScitation, ISI
  6. 6. M. Lu, M. A. Bevan, and D. M. Ford, J. Chem. Phys. 127, 164709 (2007). https://doi.org/10.1063/1.2779027, Google ScholarScitation, ISI
  7. 7. J. B. Perrin, J. Ann. Chim. Phys. 18, 1 (1909). Google Scholar
  8. 8. J. Perrin, Atoms (D. van Nostrand Company, New York, 1916). Google Scholar
  9. 9. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969). https://doi.org/10.1063/1.1672048, Google ScholarScitation, ISI
  10. 10. K. R. Hall, J. Chem. Phys. 57(6), 2252–2254 (1972). https://doi.org/10.1063/1.1678576, Google ScholarScitation, ISI
  11. 11. S. Hachisu and K. Takano, Adv. Colloid Interface Sci. 16, 233–252 (1982). https://doi.org/10.1016/0001-8686(82)85018-5, Google ScholarCrossref
  12. 12. K. E. Davis, W. B. Russel, and W. J. Glantschnig, Science 245, 507–510 (1989). https://doi.org/10.1126/science.245.4917.507, Google ScholarCrossref
  13. 13. M. A. Rutgers, J. H. Dunsmuir, J.-Z. Xue, W. B. Russel, and P. M. Chaikin, Phys. Rev. B 53(9), 5043–5046 (1996). https://doi.org/10.1103/physrevb.53.5043, Google ScholarCrossref
  14. 14. J. A. Barker and D. Henderson, J. Chem. Phys. 47(11), 4714–4721 (1967). https://doi.org/10.1063/1.1701689, Google ScholarScitation, ISI
  15. 15. R. E. Beckham and M. A. Bevan, J. Chem. Phys. 127, 164708 (2007). https://doi.org/10.1063/1.2794340, Google ScholarScitation, ISI
  16. 16. B. Luigjes, D. M. E. Thies-Weesie, B. H. Erné, and A. P. Philipse, J. Phys.: Condens. Matter 24(24), 245104 (2012). https://doi.org/10.1088/0953-8984/24/24/245104, Google ScholarCrossref
  17. 17. D. J. Beltran-Villegas, B. A. Schultz, N. H. P. Nguyen, S. C. Glotzer, and R. G. Larson, Soft Matter 10(26), 4593–4602 (2014). https://doi.org/10.1039/c3sm53136h, Google ScholarCrossref
  18. 18. F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, and C. Cottin-Bizonne, Phys. Rev. X 5(1), 011004 (2015). https://doi.org/10.1103/physrevx.5.011004, Google ScholarCrossref
  19. 19. Z. M. Sherman and J. W. Swan, ACS Nano 10(5), 5260–5271 (2016). https://doi.org/10.1021/acsnano.6b01050, Google ScholarCrossref
  20. 20. S. V. Savenko and M. Dijkstra, Phys. Rev. E 70(5), 051401 (2004). https://doi.org/10.1103/physreve.70.051401, Google ScholarCrossref
  21. 21. T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995). Google ScholarCrossref
  22. 22. M. T. Sullivan, K. Zhao, A. D. Hollingsworth, R. H. Austin, W. B. Russel, and P. M. Chaikin, Phys. Rev. Lett. 96, 015703 (2006). https://doi.org/10.1103/physrevlett.96.015703, Google ScholarCrossref
  23. 23. M. E. Leunissen and A. van Blaaderen, J. Chem. Phys. 128(16), 164509–164512 (2008). https://doi.org/10.1063/1.2909200, Google ScholarScitation, ISI
  24. 24. S. O. Lumsdon, E. W. Kaler, and O. D. Velev, Langmuir 20(6), 2108–2116 (2004). https://doi.org/10.1021/la035812y, Google ScholarCrossref
  25. 25. B. D. Smith, T. S. Mayer, and C. D. Keating, Annu. Rev. Phys. Chem. 63(1), 241–263 (2012). https://doi.org/10.1146/annurev-physchem-032210-103346, Google ScholarCrossref
  26. 26. J. P. Singh, P. P. Lele, F. Nettesheim, N. J. Wagner, and E. M. Furst, Phys. Rev. E 79(5), 050401 (2009). https://doi.org/10.1103/physreve.79.050401, Google ScholarCrossref
  27. 27. J. J. Juarez and M. A. Bevan, Adv. Funct. Mater. 22(18), 3833–3839 (2012). https://doi.org/10.1002/adfm.201200400, Google ScholarCrossref
  28. 28. X. Tang, B. Rupp, Y. Yang, T. D. Edwards, M. A. Grover, and M. A. Bevan, ACS Nano 10(7), 6791–6798 (2016). https://doi.org/10.1021/acsnano.6b02400, Google ScholarCrossref
  29. 29. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, and R. Pethig, J. Phys. D: Appl. Phys. 26(8), 1278–1285 (1993). https://doi.org/10.1088/0022-3727/26/8/019, Google ScholarCrossref
  30. 30. T. B. Jones and M. Washizu, J. Electrostat. 33(2), 199–212 (1994). https://doi.org/10.1016/0304-3886(94)90054-x, Google ScholarCrossref
  31. 31. J. J. Juarez and M. A. Bevan, J. Chem. Phys. 131, 134704 (2009). https://doi.org/10.1063/1.3241081, Google ScholarScitation, ISI
  32. 32. J. J. Juarez, J.-Q. Cui, B. G. Liu, and M. A. Bevan, Langmuir 27(15), 9211–9218 (2011). https://doi.org/10.1021/la201478y, Google ScholarCrossref
  33. 33. J. J. Juarez, B. G. Liu, J.-Q. Cui, and M. A. Bevan, Langmuir 27(15), 9219–9226 (2011). https://doi.org/10.1021/la2014804, Google ScholarCrossref
  34. 34. J. J. Juarez, S. E. Feicht, and M. A. Bevan, Soft Matter 8(1), 94–103 (2012). https://doi.org/10.1039/c1sm06414b, Google ScholarCrossref
  35. 35. T. D. Edwards, D. J. Beltran-Villegas, and M. A. Bevan, Soft Matter 9(38), 9208–9218 (2013). https://doi.org/10.1039/c3sm50809a, Google ScholarCrossref
  36. 36. D. Henderson, Mol. Phys. 34(2), 301–315 (1977). https://doi.org/10.1080/00268977700101741, Google ScholarCrossref
  37. 37. B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phys. 49(8), 3688–3696 (1968). https://doi.org/10.1063/1.1670653, Google ScholarScitation, ISI
  38. 38. P. Bahukudumbi and M. A. Bevan, J. Chem. Phys. 126, 244702 (2007). https://doi.org/10.1063/1.2739548, Google ScholarScitation, ISI
  39. 39. G. E. Fernandes, D. J. Beltran-Villegas, and M. A. Bevan, J. Chem. Phys. 131, 134705 (2009). https://doi.org/10.1063/1.3243686, Google ScholarScitation, ISI
  40. 40. J. J. Juarez, P. P. Mathai, J. A. Liddle, and M. A. Bevan, Lab Chip 12(20), 4063–4070 (2012). https://doi.org/10.1039/c2lc40692f, Google ScholarCrossref
  41. 41. X. Tang, J. Zhang, M. A. Bevan, and M. A. Grover, J. Process Control 60, 141–151 (2017). https://doi.org/10.1016/j.jprocont.2017.06.003, Google ScholarCrossref
  42. 42. J. F. Brady, J. Chem. Phys. 98(4), 3335–3341 (1993). https://doi.org/10.1063/1.464105, Google ScholarScitation, ISI
  43. 43. P. M. Adriani and A. P. Gast, Phys. Fluids 31(10), 2757–2768 (1988). https://doi.org/10.1063/1.866983, Google ScholarScitation, ISI
  44. 44. R. Tao and J. M. Sun, Phys. Rev. Lett. 67(3), 398 (1991). https://doi.org/10.1103/physrevlett.67.398, Google ScholarCrossref
  45. 45. H.-J. Wu, T. O. Pangburn, R. E. Beckham, and M. A. Bevan, Langmuir 21(22), 9879–9888 (2005). https://doi.org/10.1021/la050671g, Google ScholarCrossref
  46. 46. T. M. Truskett, S. Torquato, S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Phys. Rev. E 58 (3), 3083–3088 (1998). https://doi.org/10.1103/physreve.58.3083, Google ScholarCrossref
  47. 47. M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Phys. Rev. E 87(4), 042134 (2013). https://doi.org/10.1103/physreve.87.042134, Google ScholarCrossref
  48. 48. C. Regnaut and J. C. Ravey, J. Chem. Phys. 91(2), 1211–1221 (1989). https://doi.org/10.1063/1.457194, Google ScholarScitation, ISI
  49. 49. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457–2484 (1979). https://doi.org/10.1103/physrevb.19.2457, Google ScholarCrossref
  50. 50. S. van Teeffelen, C. N. Likos, and H. Löwen, Phys. Rev. Lett. 100(10), 108302 (2008). https://doi.org/10.1103/physrevlett.100.108302, Google ScholarCrossref
  51. 51. J.-P. Berrut and L. N. Trefethen, SIAM Rev. 46(3), 501–517 (2004). https://doi.org/10.1137/s0036144502417715, Google ScholarCrossref
  52. 52. T. D. Edwards, Y. Yang, D. J. Beltran-Villegas, and M. A. Bevan, Sci. Rep. 4, 6132 (2014). https://doi.org/10.1038/srep06132, Google ScholarCrossref
  53. 53. Y. Yang, R. Thyagarajan, D. M. Ford, and M. A. Bevan, J. Chem. Phys. 144(20), 204904 (2016). https://doi.org/10.1063/1.4951698, Google ScholarScitation, ISI
  54. 54. B. Khusid and A. Acrivos, Phys. Rev. E 54(5), 5428 (1996). https://doi.org/10.1103/physreve.54.5428, Google ScholarCrossref
  55. 55. R. L. Davidchack and B. B. Laird, J. Chem. Phys. 108(22), 9452–9462 (1998). https://doi.org/10.1063/1.476396, Google ScholarScitation, ISI
  1. © 2020 Author(s). Published under license by AIP Publishing.