ABSTRACT
A method is reported to determine equilibrium concentration profiles and local phase behavior of colloids on multi-dimensional energy landscapes. A general expression is derived based on local particle concentration and osmotic pressure differences that are balanced by forces on colloids due to energy landscape gradients. This analysis is applied to colloidal particles in high frequency AC electric fields within octupolar electrodes, where the energy landscape can be shaped in two dimensions. These results are also directly applicable to any particles having induced dipoles in spatially non-uniform electromagnetic fields. Predictions based on modeling colloids with an effective hard disk equation of state indicate inhomogeneous solid and fluid states coexisting on different shaped energy landscapes including multiple minima. Model predictions show excellent agreement with time-averaged Brownian dynamic simulations at equilibrium. Findings demonstrate a general approach to understand colloidal phase behavior on energy landscapes due to external fields, which could enable control of colloidal microstructures on morphing energy landscapes and the inverse design of fields to assemble hierarchically structured colloidal materials.
ACKNOWLEDGMENTS
We acknowledge financial support by the Department of Energy (BES Grant No. DE-SC0017892) and the preliminary work under NSF, Grant No. 1562579.
- 1. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989). Google ScholarCrossref
- 2. J. L. Anderson, Annu. Rev. Fluid Mech. 21, 61–99 (1989). https://doi.org/10.1146/annurev.fl.21.010189.000425, Google ScholarCrossref
- 3. H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Philadelphia, PA, 2003). Google Scholar
- 4. J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, ACS Nano 5(1), 217–226 (2011). https://doi.org/10.1021/nn102383s, Google ScholarCrossref
- 5. T. Biben, J.-P. Hansen, and J.-L. Barrat, J. Chem. Phys. 98(9), 7330–7344 (1993). https://doi.org/10.1063/1.464726, Google ScholarScitation, ISI
- 6. M. Lu, M. A. Bevan, and D. M. Ford, J. Chem. Phys. 127, 164709 (2007). https://doi.org/10.1063/1.2779027, Google ScholarScitation, ISI
- 7. J. B. Perrin, J. Ann. Chim. Phys. 18, 1 (1909). Google Scholar
- 8. J. Perrin, Atoms (D. van Nostrand Company, New York, 1916). Google Scholar
- 9. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969). https://doi.org/10.1063/1.1672048, Google ScholarScitation, ISI
- 10. K. R. Hall, J. Chem. Phys. 57(6), 2252–2254 (1972). https://doi.org/10.1063/1.1678576, Google ScholarScitation, ISI
- 11. S. Hachisu and K. Takano, Adv. Colloid Interface Sci. 16, 233–252 (1982). https://doi.org/10.1016/0001-8686(82)85018-5, Google ScholarCrossref
- 12. K. E. Davis, W. B. Russel, and W. J. Glantschnig, Science 245, 507–510 (1989). https://doi.org/10.1126/science.245.4917.507, Google ScholarCrossref
- 13. M. A. Rutgers, J. H. Dunsmuir, J.-Z. Xue, W. B. Russel, and P. M. Chaikin, Phys. Rev. B 53(9), 5043–5046 (1996). https://doi.org/10.1103/physrevb.53.5043, Google ScholarCrossref
- 14. J. A. Barker and D. Henderson, J. Chem. Phys. 47(11), 4714–4721 (1967). https://doi.org/10.1063/1.1701689, Google ScholarScitation, ISI
- 15. R. E. Beckham and M. A. Bevan, J. Chem. Phys. 127, 164708 (2007). https://doi.org/10.1063/1.2794340, Google ScholarScitation, ISI
- 16. B. Luigjes, D. M. E. Thies-Weesie, B. H. Erné, and A. P. Philipse, J. Phys.: Condens. Matter 24(24), 245104 (2012). https://doi.org/10.1088/0953-8984/24/24/245104, Google ScholarCrossref
- 17. D. J. Beltran-Villegas, B. A. Schultz, N. H. P. Nguyen, S. C. Glotzer, and R. G. Larson, Soft Matter 10(26), 4593–4602 (2014). https://doi.org/10.1039/c3sm53136h, Google ScholarCrossref
- 18. F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, and C. Cottin-Bizonne, Phys. Rev. X 5(1), 011004 (2015). https://doi.org/10.1103/physrevx.5.011004, Google ScholarCrossref
- 19. Z. M. Sherman and J. W. Swan, ACS Nano 10(5), 5260–5271 (2016). https://doi.org/10.1021/acsnano.6b01050, Google ScholarCrossref
- 20. S. V. Savenko and M. Dijkstra, Phys. Rev. E 70(5), 051401 (2004). https://doi.org/10.1103/physreve.70.051401, Google ScholarCrossref
- 21. T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995). Google ScholarCrossref
- 22. M. T. Sullivan, K. Zhao, A. D. Hollingsworth, R. H. Austin, W. B. Russel, and P. M. Chaikin, Phys. Rev. Lett. 96, 015703 (2006). https://doi.org/10.1103/physrevlett.96.015703, Google ScholarCrossref
- 23. M. E. Leunissen and A. van Blaaderen, J. Chem. Phys. 128(16), 164509–164512 (2008). https://doi.org/10.1063/1.2909200, Google ScholarScitation, ISI
- 24. S. O. Lumsdon, E. W. Kaler, and O. D. Velev, Langmuir 20(6), 2108–2116 (2004). https://doi.org/10.1021/la035812y, Google ScholarCrossref
- 25. B. D. Smith, T. S. Mayer, and C. D. Keating, Annu. Rev. Phys. Chem. 63(1), 241–263 (2012). https://doi.org/10.1146/annurev-physchem-032210-103346, Google ScholarCrossref
- 26. J. P. Singh, P. P. Lele, F. Nettesheim, N. J. Wagner, and E. M. Furst, Phys. Rev. E 79(5), 050401 (2009). https://doi.org/10.1103/physreve.79.050401, Google ScholarCrossref
- 27. J. J. Juarez and M. A. Bevan, Adv. Funct. Mater. 22(18), 3833–3839 (2012). https://doi.org/10.1002/adfm.201200400, Google ScholarCrossref
- 28. X. Tang, B. Rupp, Y. Yang, T. D. Edwards, M. A. Grover, and M. A. Bevan, ACS Nano 10(7), 6791–6798 (2016). https://doi.org/10.1021/acsnano.6b02400, Google ScholarCrossref
- 29. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, and R. Pethig, J. Phys. D: Appl. Phys. 26(8), 1278–1285 (1993). https://doi.org/10.1088/0022-3727/26/8/019, Google ScholarCrossref
- 30. T. B. Jones and M. Washizu, J. Electrostat. 33(2), 199–212 (1994). https://doi.org/10.1016/0304-3886(94)90054-x, Google ScholarCrossref
- 31. J. J. Juarez and M. A. Bevan, J. Chem. Phys. 131, 134704 (2009). https://doi.org/10.1063/1.3241081, Google ScholarScitation, ISI
- 32. J. J. Juarez, J.-Q. Cui, B. G. Liu, and M. A. Bevan, Langmuir 27(15), 9211–9218 (2011). https://doi.org/10.1021/la201478y, Google ScholarCrossref
- 33. J. J. Juarez, B. G. Liu, J.-Q. Cui, and M. A. Bevan, Langmuir 27(15), 9219–9226 (2011). https://doi.org/10.1021/la2014804, Google ScholarCrossref
- 34. J. J. Juarez, S. E. Feicht, and M. A. Bevan, Soft Matter 8(1), 94–103 (2012). https://doi.org/10.1039/c1sm06414b, Google ScholarCrossref
- 35. T. D. Edwards, D. J. Beltran-Villegas, and M. A. Bevan, Soft Matter 9(38), 9208–9218 (2013). https://doi.org/10.1039/c3sm50809a, Google ScholarCrossref
- 36. D. Henderson, Mol. Phys. 34(2), 301–315 (1977). https://doi.org/10.1080/00268977700101741, Google ScholarCrossref
- 37. B. J. Alder, W. G. Hoover, and D. A. Young, J. Chem. Phys. 49(8), 3688–3696 (1968). https://doi.org/10.1063/1.1670653, Google ScholarScitation, ISI
- 38. P. Bahukudumbi and M. A. Bevan, J. Chem. Phys. 126, 244702 (2007). https://doi.org/10.1063/1.2739548, Google ScholarScitation, ISI
- 39. G. E. Fernandes, D. J. Beltran-Villegas, and M. A. Bevan, J. Chem. Phys. 131, 134705 (2009). https://doi.org/10.1063/1.3243686, Google ScholarScitation, ISI
- 40. J. J. Juarez, P. P. Mathai, J. A. Liddle, and M. A. Bevan, Lab Chip 12(20), 4063–4070 (2012). https://doi.org/10.1039/c2lc40692f, Google ScholarCrossref
- 41. X. Tang, J. Zhang, M. A. Bevan, and M. A. Grover, J. Process Control 60, 141–151 (2017). https://doi.org/10.1016/j.jprocont.2017.06.003, Google ScholarCrossref
- 42. J. F. Brady, J. Chem. Phys. 98(4), 3335–3341 (1993). https://doi.org/10.1063/1.464105, Google ScholarScitation, ISI
- 43. P. M. Adriani and A. P. Gast, Phys. Fluids 31(10), 2757–2768 (1988). https://doi.org/10.1063/1.866983, Google ScholarScitation, ISI
- 44. R. Tao and J. M. Sun, Phys. Rev. Lett. 67(3), 398 (1991). https://doi.org/10.1103/physrevlett.67.398, Google ScholarCrossref
- 45. H.-J. Wu, T. O. Pangburn, R. E. Beckham, and M. A. Bevan, Langmuir 21(22), 9879–9888 (2005). https://doi.org/10.1021/la050671g, Google ScholarCrossref
- 46. T. M. Truskett, S. Torquato, S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Phys. Rev. E 58 (3), 3083–3088 (1998). https://doi.org/10.1103/physreve.58.3083, Google ScholarCrossref
- 47. M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Phys. Rev. E 87(4), 042134 (2013). https://doi.org/10.1103/physreve.87.042134, Google ScholarCrossref
- 48. C. Regnaut and J. C. Ravey, J. Chem. Phys. 91(2), 1211–1221 (1989). https://doi.org/10.1063/1.457194, Google ScholarScitation, ISI
- 49. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457–2484 (1979). https://doi.org/10.1103/physrevb.19.2457, Google ScholarCrossref
- 50. S. van Teeffelen, C. N. Likos, and H. Löwen, Phys. Rev. Lett. 100(10), 108302 (2008). https://doi.org/10.1103/physrevlett.100.108302, Google ScholarCrossref
- 51. J.-P. Berrut and L. N. Trefethen, SIAM Rev. 46(3), 501–517 (2004). https://doi.org/10.1137/s0036144502417715, Google ScholarCrossref
- 52. T. D. Edwards, Y. Yang, D. J. Beltran-Villegas, and M. A. Bevan, Sci. Rep. 4, 6132 (2014). https://doi.org/10.1038/srep06132, Google ScholarCrossref
- 53. Y. Yang, R. Thyagarajan, D. M. Ford, and M. A. Bevan, J. Chem. Phys. 144(20), 204904 (2016). https://doi.org/10.1063/1.4951698, Google ScholarScitation, ISI
- 54. B. Khusid and A. Acrivos, Phys. Rev. E 54(5), 5428 (1996). https://doi.org/10.1103/physreve.54.5428, Google ScholarCrossref
- 55. R. L. Davidchack and B. B. Laird, J. Chem. Phys. 108(22), 9452–9462 (1998). https://doi.org/10.1063/1.476396, Google ScholarScitation, ISI
Article Metrics
Views
543
Citations
Crossref
0
Web of Science
ISI
4
Altmetric
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.