ABSTRACT
Nanopore sensing is a powerful tool for the detection of biomolecules. Solid-state nanopores act as single-molecule sensors that can function in harsh conditions. Their resilient nature makes them attractive candidates for taking this technology into the field to measure environmental samples for life detection in space and water quality monitoring. Here, we discuss the fabrication of silicon nitride pores from ∼1.6 to 20 nm in diameter in 20-nm-thick silicon nitride membranes suspended on glass chips and their performance. We detect pure laboratory samples containing a single analyte including DNA, BSA, microRNA, TAT, and poly-D-lys-hydrobromide. We also measured an environmental (mixed-analyte) sample, containing Antarctic dirt provided by NASA Ames. For DNA measurements, in addition to using KCl and NaCl solutions, we used the artificial (synthetic) seawater, which is a mixture of different salts mimicking the composition of natural seawater. These samples were spiked with double-stranded DNA (dsDNA) fragments at different concentrations to establish the limits of nanopore sensitivity in candidate environment conditions. Nanopore chips were cleaned and reused for successive measurements. A stand-alone, 1-MHz-bandwidth Chimera amplifier was used to determine the DNA concentration in artificial seawater that we can detect in a practical time scale of a few minutes. We also designed and developed a new compact nanopore reader, a portable read-out device with miniaturized fluidic cells, which can obtain translocation data at bandwidths up to 100 kHz. Using this new instrument, we record translocations of 400 bp, 1000 bp, and 15000 bp dsDNA fragments and show discrimination by analysis of current amplitude and event duration histograms.
ACKNOWLEDGMENTS
The glass chips and nanopores were fabricated at the Pennovation Center and at the University of Pennsylvania’s Singh Center for Nanotechnology and at Rutgers University by Goeppert LLC. We thank Dr. Chris McKay from NASA Ames for providing samples of the Linnaeus Terrace dirt from Antarctic Dry Valleys. We also thank Jacob Swett at the University of Oxford for useful discussions and Michele Rossi, previously at Elements, SRL, for help with the portable nanopore reader. The nanopore reader and fluidic cell were developed here in collaboration with Elements, SRL, Italy. The work was supported by NASA SBIR Phase I No. S.11-3492 (2018-1) “Detecting life in ocean worlds with low-capacitance solid-state nanopores.” This work was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under Grant No. NNCI-1542153.
- 1. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U. S. A. 93, 13770 (1996). https://doi.org/10.1073/pnas.93.24.13770, Google ScholarCrossref, ISI
- 2. D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, and J. A. Schloss, Nat. Biotechnol. 26, 1146 (2008). https://doi.org/10.1038/nbt.1495, Google ScholarCrossref, ISI
- 3. M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer, Biophys. J. 77, 3227 (1999). https://doi.org/10.1016/s0006-3495(99)77153-5, Google ScholarCrossref
- 4. O. K. Dudko, J. Mathé, A. Szabo, A. Meller, and G. Hummer, Biophys. J. 92, 4188 (2007). https://doi.org/10.1529/biophysj.106.102855, Google ScholarCrossref
- 5. K. Healy, B. Schiedt, I. P. Morrison, and A. P. Morrison, Nanomedicine 2, 875 (2007). https://doi.org/10.2217/17435889.2.6.875, Google ScholarCrossref
- 6. T. Z. Butler, M. Pavlenok, I. M. Derrington, M. Niederweis, and J. H. Gundlach, Proc. Natl. Acad. Sci. U. S. A. 105, 20647 (2008). https://doi.org/10.1073/pnas.0807514106, Google ScholarCrossref
- 7. M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, Nat. Nanotechnol. 5, 160 (2010). https://doi.org/10.1038/nnano.2009.379, Google ScholarCrossref
- 8. R. Kawano, A. E. P. P. Schibel, C. Cauley, and H. S. White, Langmuir 25, 1233 (2009). https://doi.org/10.1021/la803556p, Google ScholarCrossref
- 9. L.-Q. Gu and J. W. Shim, Analyst 135, 441 (2010). https://doi.org/10.1039/b907735a, Google ScholarCrossref
- 10. Z. S. Siwy and S. Howorka, Chem. Soc. Rev. 39, 1115 (2010). https://doi.org/10.1039/b909105j, Google ScholarCrossref, ISI
- 11. S. W. Kowalczyk, A. R. Hall, and C. Dekker, Nano Lett. 10, 324 (2010). https://doi.org/10.1021/nl903631m, Google ScholarCrossref
- 12. K. R. Lieberman, G. M. Cherf, M. J. Doody, F. Olasagasti, Y. Kolodji, and M. Akeson, J. Am. Chem. Soc. 132, 17961 (2010). https://doi.org/10.1021/ja1087612, Google ScholarCrossref
- 13. C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. T. C. C. Johnson, and M. Drndić, Nano Lett. 10, 2915 (2010). https://doi.org/10.1021/nl101046t, Google ScholarCrossref, ISI
- 14. D. W. Deamer and M. Akeson, Trends Biotechnol. 18, 147 (2000). https://doi.org/10.1016/s0167-7799(00)01426-8, Google ScholarCrossref
- 15. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, Nature 467, 190 (2010). https://doi.org/10.1038/nature09379, Google ScholarCrossref, ISI
- 16. U. Mirsaidov, J. Comer, V. Dimitrov, A. Aksimentiev, and G. Timp, Nanotechnology 21, 395501 (2010). https://doi.org/10.1088/0957-4484/21/39/395501, Google ScholarCrossref
- 17. J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. F. F. Robertson, Proc. Natl. Acad. Sci. U. S. A. 107, 12080 (2010). https://doi.org/10.1073/pnas.1002194107, Google ScholarCrossref
- 18. M. Wanunu, Phys. Life Rev. 9, 125 (2012). https://doi.org/10.1016/j.plrev.2012.05.010, Google ScholarCrossref
- 19. W. Timp, J. Comer, and A. Aksimentiev, Biophys. J. 102, L37 (2012). https://doi.org/10.1016/j.bpj.2012.04.009, Google ScholarCrossref
- 20. E. A. Manrao, I. M. Derrington, A. H. Laszlo, K. W. Langford, M. K. Hopper, N. Gillgren, M. Pavlenok, M. Niederweis, and J. H. Gundlach, Nat. Biotechnol. 30, 349 (2012). https://doi.org/10.1038/nbt.2171, Google ScholarCrossref
- 21. S. W. Kowalczyk, D. B. Wells, A. Aksimentiev, C. Dekker, P. Susan, S. W. Kowalczyk, D. B. Wells, A. Aksimentiev, and C. Dekker, Nano Lett. 12, 1038 (2012). https://doi.org/10.1021/nl204273h, Google ScholarCrossref
- 22. R. Wei, T. G. Martin, U. Rant, and H. Dietz, Angew. Chem., Int. Ed. 51, 4864 (2012). https://doi.org/10.1002/anie.201200688, Google ScholarCrossref
- 23. M. Langecker, V. Arnaut, T. G. Martin, J. List, S. Renner, M. Mayer, H. Dietz, and F. C. Simmel, Science 338, 932 (2012). https://doi.org/10.1126/science.1225624, Google ScholarCrossref
- 24. B. Luan, D. Wang, R. Zhou, S. Harrer, H. Peng, and G. Stolovitzky, Nanotechnology 23, 455102 (2012). https://doi.org/10.1088/0957-4484/23/45/455102, Google ScholarCrossref
- 25. A. Meller and D. Branton, Electrophoresis 23, 2583 (2002). https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h, Google ScholarCrossref
- 26. J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, Nat. Methods 9, 487 (2012). https://doi.org/10.1038/nmeth.1932, Google ScholarCrossref
- 27. G. M. Cherf, K. R. Lieberman, H. Rashid, C. E. Lam, K. Karplus, and M. Akeson, Nat. Biotechnol. 30, 344 (2012). https://doi.org/10.1038/nbt.2147, Google ScholarCrossref
- 28. K. Venta, G. Shemer, M. Puster, J. A. Rodríguez-Manzo, A. Balan, J. K. Rosenstein, K. Shepard, and M. Drndić, ACS Nano 7, 4629 (2013). https://doi.org/10.1021/nn4014388, Google ScholarCrossref
- 29. Y. He, M. Tsutsui, R. H. Scheicher, F. Bai, M. Taniguchi, and T. Kawai, ACS Nano 7, 538 (2013). https://doi.org/10.1021/nn304914j, Google ScholarCrossref
- 30. A. Balan, B. Machielse, D. Niedzwiecki, J. Lin, P. Ong, R. Engelke, K. L. Shepard, and M. Drndić, Nano Lett. 14, 7215 (2014). https://doi.org/10.1021/nl504345y, Google ScholarCrossref
- 31. A. Balan, C.-C. Chien, R. Engelke, and M. Drndić, Sci. Rep. 5, 17775 (2015). https://doi.org/10.1038/srep17775, Google ScholarCrossref
- 32. S. Shekar, D. J. Niedzwiecki, C.-C. Chien, P. Ong, D. A. Fleischer, J. Lin, J. K. Rosenstein, M. Drndić, and K. L. Shepard, Nano Lett. 16, 4483 (2016). https://doi.org/10.1021/acs.nanolett.6b01661, Google ScholarCrossref
- 33. M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D. Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, H. Marriott, T. Nieto, J. O’Grady, H. E. Olsen, B. S. Pedersen, A. Rhie, H. Richardson, A. R. Quinlan, T. P. Snutch, L. Tee, B. Paten, A. M. Phillippy, J. T. Simpson, N. J. Loman, and M. Loose, Nat. Biotechnol. 36, 338 (2018). https://doi.org/10.1038/nbt.4060, Google ScholarCrossref
- 34. G. Danda and M. Drndić, Curr. Opin. Biotechnol. 55, 124 (2019). https://doi.org/10.1016/j.copbio.2018.09.002, Google ScholarCrossref
- 35. A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker, Nat. Mater. 2, 537 (2003). https://doi.org/10.1038/nmat941, Google ScholarCrossref, ISI
- 36. D. Fologea, M. Gershow, B. Ledden, D. S. McNabb, J. A. Golovchenko, and J. Li, Nano Lett. 5, 1905 (2005). https://doi.org/10.1021/nl051199m, Google ScholarCrossref, ISI
- 37. U. F. Keyser, B. N. Koeleman, S. Van Dorp, D. Krapf, R. M. M. M. Smeets, S. G. Lemay, N. H. Dekker, and C. Dekker, Nat. Phys. 2, 473 (2006). https://doi.org/10.1038/nphys344, Google ScholarCrossref, ISI
- 38. M. Rhee and M. A. Burns, Trends Biotechnol. 24, 580 (2006). https://doi.org/10.1016/j.tibtech.2006.10.005, Google ScholarCrossref
- 39. J. W. F. Robertson, C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov, and J. J. Kasianowicz, Proc. Natl. Acad. Sci. U. S. A. 104, 8207 (2007). https://doi.org/10.1073/pnas.0611085104, Google ScholarCrossref
- 40. R. M. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker, Proc. Natl. Acad. Sci. U. S. A. 105, 417 (2008). https://doi.org/10.1073/pnas.0705349105, Google ScholarCrossref
- 41. K. M. Halverson, R. G. Panchal, T. L. Nguyen, R. Gussio, S. F. Little, M. Misakian, S. Bavari, and J. J. Kasianowicz, J. Biol. Chem. 280, 34056 (2005). https://doi.org/10.1074/jbc.m507928200, Google ScholarCrossref
- 42. M. Wanunu, T. Dadosh, V. Ray, J. Jin, L. McReynolds, and M. Drndić, Nat. Nanotechnol. 5, 807 (2010). https://doi.org/10.1038/nnano.2010.202, Google ScholarCrossref
- 43. K. E. Venta, M. B. Zanjani, X. Ye, G. Danda, C. B. Murray, J. R. Lukes, and M. Drndić, Nano Lett. 14, 5358 (2014). https://doi.org/10.1021/nl502448s, Google ScholarCrossref
- 44. W. H. Coulter, U.S. patent 2656508 (October 20, 1953). Google Scholar
- 45. S. A. Benner, Astrobiology 17, 840 (2017). https://doi.org/10.1089/ast.2016.1611, Google ScholarCrossref
- 46. A. F. Davila and C. P. McKay, Astrobiology 14, 534 (2014). https://doi.org/10.1089/ast.2014.1150, Google ScholarCrossref
- 47. F. Rezzonico, Astrobiology 14, 344 (2014). https://doi.org/10.1089/ast.2013.1120, Google ScholarCrossref
- 48. K. F. Bywaters, C. P. McKay, A. F. Davila, and R. C. Quinn, in Proceedings of Conference on Biosignature Preservation and Detection in Mars Analog Environments, Lake Tahoe, NV, 16–18 May 2016, paper 2014. Google Scholar
- 49. S. S. Johnson, E. Zaikova, D. S. Goerlitz, Y. Bai, and S. W. Tighe, J. Biomol. Tech. 28, 2 (2017). https://doi.org/10.7171/jbt.17-2801-009, Google ScholarCrossref
- 50. A. Mojarro, J. Hachey, R. Bailey, M. Brown, R. Doebler, G. Ruvkun, M. T. Zuber, and C. E. Carr, Astrobiology 19, 1139 (2019). https://doi.org/10.1089/ast.2018.1929, Google ScholarCrossref
- 51. S. L. Castro-Wallace, C. Y. Chiu, K. K. John, S. E. Stahl, K. H. Rubins, A. B. R. McIntyre, J. P. Dworkin, M. L. Lupisella, D. J. Smith, D. J. Botkin, T. A. Stephenson, S. Juul, D. J. Turner, F. Izquierdo, S. Federman, D. Stryke, S. Somasekar, N. Alexander, G. Yu, C. E. Mason, and A. S. Burton, Sci. Rep. 7, 18022 (2017). https://doi.org/10.1038/s41598-017-18364-0, Google ScholarCrossref
- 52. K. B. Bywaters, H. J. Schmidt, W. Vercoutere, D. Deamer, A. R. Hawkins, R. C. Quinn, A. S. Burton, and C. P. McKay, ECS Meet. Abstr. MA2019-02, 2467 (2019). https://doi.org/10.1149/MA2019-02/57/2476, Google ScholarCrossref
- 53. W. D. Williams, Mar. Freshwater Res. 37, 177 (1986). https://doi.org/10.1071/mf9860177, Google ScholarCrossref
- 54. D. R. Kester, I. W. Duedall, D. N. Connors, and R. M. Pytkowicz, Limnol. Oceanogr. 12, 176 (1967). https://doi.org/10.4319/lo.1967.12.1.0176, Google ScholarCrossref
- 55. W.-H. Chuang, T. Luger, R. K. Fettig, and R. Ghodssi, J. Microelectromech. Syst. 13, 870 (2004). https://doi.org/10.1109/jmems.2004.836815, Google ScholarCrossref
- 56. I. Chakraborty, W. C. Tang, D. P. Bame, and T. K. Tang, Sens. Actuators, A 83, 188 (2000). https://doi.org/10.1016/s0924-4247(99)00382-9, Google ScholarCrossref
- 57. J. J. Bock, J. Glenn, S. M. Grannan, K. D. Irwin, A. E. Lange, H. G. LeDuc, and A. D. Turner, Proc. SPIE 3357, 297–304 (1998). https://doi.org/10.1117/12.317365, Google ScholarCrossref
- 58. L. C. Martin, J. D. Wrbanek, and G. C. Fralick, in ICIASF 2001 Record of 19th International Congress Instrumentation in Aerospace Simulation Facilities (Cat. No.01CH37215) (University of Michigan, 2001), pp. 196–203. Google Scholar
- 59. J. A. Rodríguez-Manzo, M. Puster, A. Nicolaï, V. Meunier, and M. Drndić, ACS Nano 9, 6555 (2015). https://doi.org/10.1021/acsnano.5b02531, Google ScholarCrossref
- 60. M. D. Fischbein and M. Drndić, Nano Lett. 7, 1329 (2007). https://doi.org/10.1021/nl0703626, Google ScholarCrossref, ISI
- 61. C.-C. C. Chien, S. Shekar, D. J. Niedzwiecki, K. L. Shepard, and M. Drndić, ACS Nano 13, 010545 (2019). https://doi.org/10.1021/acsnano.9b04626, Google ScholarCrossref
- 62. M. Waugh, K. Briggs, D. Gunn, M. Gibeault, S. King, Q. Ingram, A. M. Jimenez, S. Berryman, D. Lomovtsev, L. Andrzejewski, and V. Tabard-Cossa, Nat. Protoc. 15, 122 (2020). https://doi.org/10.1038/s41596-019-0255-2, Google ScholarCrossref
- 63. G. Danda, P. Masih Das, Y.-C. Chou, J. T. Mlack, W. M. Parkin, C. H. Naylor, K. Fujisawa, T. Zhang, L. B. Fulton, M. Terrones, A. T. C. Johnson, and M. Drndić, ACS Nano 11, 1937 (2017). https://doi.org/10.1021/acsnano.6b08028, Google ScholarCrossref
- 64. G. Danda, P. Masih Das, and M. Drndić, 2D Mater. 5, 035011 (2018). https://doi.org/10.1088/2053-1583/aabb73, Google ScholarCrossref
- 65. T. Gilboa, E. Zvuloni, A. Zrehen, A. H. Squires, and A. Meller, Adv. Funct. Mater. (published online). https://doi.org/10.1002/adfm.201900642, Google ScholarCrossref
- 66. H. Yamazaki, R. Hu, Q. Zhao, and M. Wanunu, ACS Nano 12, 012472 (2018). https://doi.org/10.1021/acsnano.8b06805, Google ScholarCrossref
- 67. C. L. C. Ip, M. Loose, J. R. Tyson, M. de Cesare, B. L. Brown, M. Jain, R. M. Leggett, D. A. Eccles, V. Zalunin, J. M. Urban, P. Piazza, R. J. Bowden, B. Paten, S. Mwaigwisya, E. M. Batty, J. T. Simpson, T. P. Snutch, E. Birney, D. Buck, S. Goodwin, H. J. Jansen, J. O’Grady, H. E. Olsen, and MinION Analysis and Reference Consortium, F1000Research 4, 1075 (2015). https://doi.org/10.12688/f1000research.7201.1, Google ScholarCrossref
- 68. A. K. Wright and M. R. Thompson, Biophys. J. 15, 137 (1975). https://doi.org/10.1016/s0006-3495(75)85797-3, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.