ABSTRACT
Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional realizations of an underlying dynamical system. In this paper, we use manifold learning to organize unstructured ensembles of observations (“trials”) of a system’s response surface. We have no control over where every trial starts, and during each trial, operating conditions are varied by turning “agnostic” knobs, which change system parameters in a systematic, but unknown way. As one (or more) knobs “turn,” we record (possibly partial) observations of the system response. We demonstrate how such partial and disorganized observation ensembles can be integrated into coherent response surfaces whose dimension and parametrization can be systematically recovered in a data-driven fashion. The approach can be justified through the Whitney and Takens embedding theorems, allowing reconstruction of manifolds/attractors through different types of observations. We demonstrate our approach by organizing unstructured observations of response surfaces, including the reconstruction of a cusp bifurcation surface for hydrogen combustion in a continuous stirred tank reactor. Finally, we demonstrate how this observation-based reconstruction naturally leads to informative transport maps between the input parameter space and output/state variable spaces.
ACKNOWLEDGMENTS
This work was partially funded by the National Science Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA) (I.G.K. and F.D.), the SNSF (Grant No. P2EZP2_168833) (M.K.), and the Army Research Office (ARO) (I.G.K., E.M.B.) and Office of Naval Research (ONR) (E.M.B.). Discussions with Professor J. Guckenheimer are gratefully acknowledged.
- 1. E. J. Doedel, Congr. Numer. 30, 25 (1981). Google Scholar
- 2. E. J. Doedel, T. F. Fairgrieve, B. Sandstede, A. R. Champneys, Y. A. Kuznetsov, and X. Wang (2007), see http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.423.2590. Google Scholar
- 3. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003). https://doi.org/10.1145/779359.779362, Google ScholarCrossref
- 4. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker, Proc. Natl. Acad. Sci. U.S.A. 102, 7426 (2005). https://doi.org/10.1073/pnas.0500334102, Google ScholarCrossref
- 5. T. Sauer, Phys. Rev. Lett. 72, 3811 (1994). https://doi.org/10.1103/PhysRevLett.72.3811, Google ScholarCrossref
- 6. O. Yair, R. Talmon, R. R. Coifman, and I. G. Kevrekidis, Proc. Natl. Acad. Sci. U.S.A. 114, E7865 (2017). https://doi.org/10.1073/pnas.1620045114, Google ScholarCrossref
- 7. S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl. Acad. Sci. U.S.A. 113, 3932 (2016). https://doi.org/10.1073/pnas.1517384113, Google ScholarCrossref
- 8. B. Moore, IEEE Trans. Automat. Contr. 26, 17 (1981). https://doi.org/10.1109/TAC.1981.1102568, Google ScholarCrossref
- 9. F. Takens, in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381. Google Scholar
- 10. T. Berry and T. Sauer, Appl. Comput. Harmon. Anal. 40, 439–469 (2015). Google ScholarCrossref
- 11. M. Belkin and P. Niyogi, Neural Comput. 15, 1373 (2003). https://doi.org/10.1162/089976603321780317, Google ScholarCrossref
- 12. C. J. Dsilva, R. Talmon, R. R. Coifman, and I. G. Kevrekidis, Appl. Comput. Harmon. Anal. 44, 759 (2018). https://doi.org/10.1016/j.acha.2015.06.008, Google ScholarCrossref
- 13. T. Berry and J. Harlim, Appl. Comput. Harmon. Anal. 45, 84 (2018). https://doi.org/10.1016/j.acha.2016.08.005, Google ScholarCrossref
- 14. F. R. K. Chung, Spectral Graph Theory (American Mathematical Society, 1996). Google ScholarCrossref
- 15. B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Appl. Comput. Harmon. Anal. 21, 113 (2006). https://doi.org/10.1016/j.acha.2005.07.004, Google ScholarCrossref
- 16. T. Shnitzer, R. Talmon, and J.-J. Slotine, IEEE Trans. Signal Process. 65, 904 (2017). https://doi.org/10.1109/TSP.2016.2616334, Google ScholarCrossref
- 17. T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579 (1991). https://doi.org/10.1007/BF01053745, Google ScholarCrossref, ISI
- 18. M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities (Springer US, 1973). Google ScholarCrossref
- 19. C. K. Law, Combustion Physics (Cambridge University Press, 2006). Google ScholarCrossref
- 20. M. Kooshkbaghi, C. E. Frouzakis, K. Boulouchos, and I. V. Karlin, Combust. Flame 162, 3166 (2015). https://doi.org/10.1016/j.combustflame.2015.05.002, Google ScholarCrossref
- 21. M. Ó. Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, Int. J. Chem. Kinet. 36, 603 (2004). https://doi.org/10.1002/kin.20036, Google ScholarCrossref
- 22. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, “CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Technical Report, Sandia National Laboratories, Livermore, CA, 1996. Google Scholar
- 23. T. Berry and J. Harlim, Appl. Comput. Harmon. Anal. 40, 68 (2016). https://doi.org/10.1016/j.acha.2015.01.001, Google ScholarCrossref, ISI
- 24. A. Singer, Appl. Comput. Harmon. Anal. 21, 128 (2006). https://doi.org/10.1016/j.acha.2006.03.004, Google ScholarCrossref
- 25. M. Budišić, R. Mohr, and I. Mezić, Chaos 22, 047510 (2012). https://doi.org/10.1063/1.4772195, Google ScholarScitation, ISI
- 26. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, J. Nonlinear Sci. 25, 1307 (2015). https://doi.org/10.1007/s00332-015-9258-5, Google ScholarCrossref, ISI
- 27. E. M. Bollt, Q. Li, F. Dietrich, and I. Kevrekidis, SIAM J. Appl. Dyn. Syst. 17, 1925 (2018). https://doi.org/10.1137/17M116207X, Google ScholarCrossref
- 28. C. Bandt and B. Pompe, Phys. Rev. Lett. 88, 174102 (2002). https://doi.org/10.1103/PhysRevLett.88.174102, Google ScholarCrossref, ISI
- 29. R. Talmon, I. Cohen, S. Gannot, and R. R. Coifman, IEEE Signal Process. Mag. 30, 75 (2013). https://doi.org/10.1109/MSP.2013.2250353, Google ScholarCrossref
- 30. L. C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorevich Mass Transfer Problem (American Mathematical Society, 1999). Google Scholar
- 31. M. Belkin, Q. Que, Y. Wang, and X. Zhou, in Proceedings of the 25th Annual Conference on Learning Theory, Proceedings of Machine Learning Research, Vol. 23, edited by S. Mannor, N. Srebro, and R. C. Williamson (PMLR, Edinburgh, Scotland, 2012), pp. 36.1–36.26. Google Scholar
- 32. L. N. Wasserstein, Probl. Inform. Transmission 5, 47 (1969). Google Scholar
- 33. C. Villani, Optimal Transport (Springer, Berlin, 2009). Google ScholarCrossref
- 34. V. Baladi, Positive Transfer Operators and Decay of Correlation (World Scientific Publishing Co. Inc., 2000). Google ScholarCrossref
- 35. D. Ruelle, Thermodynamic Formalism (Cambridge University Press, 2012). Google Scholar
- 36. E. M. Bollt and N. Santitissadeekorn, Applied and Computational Measurable Dynamics (Society for Industrial and Applied Mathematics, 2013). Google ScholarCrossref
- 37. E. N. Gilbert and H. O. Pollak, SIAM J. Appl. Math. 16, 1 (1968). https://doi.org/10.1137/0116001, Google ScholarCrossref
- 38. Q. Xia, Commun. Contemp. Math. 05, 251 (2003). https://doi.org/10.1142/S021919970300094X, Google ScholarCrossref
- 39. A. Singer and R. R. Coifman, Appl. Comput. Harmon. Anal. 25, 226 (2008). https://doi.org/10.1016/j.acha.2007.11.001, Google ScholarCrossref
- 40. C. J. Dsilva, R. Talmon, C. W. Gear, R. R. Coifman, and I. G. Kevrekidis, SIAM J. Appl. Dyn. Sys. 15, 1327 (2016). https://doi.org/10.1137/151004896, Google ScholarCrossref
- 41. N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, IEEE Trans. Pattern Anal. Mach. Intell. 39, 1853 (2017). https://doi.org/10.1109/TPAMI.2016.2615921, Google ScholarCrossref
- 42. O. Yair, M. Ben-Chen, and R. Talmon, IEEE Trans. Signal Process. 67, 1797 (2019). https://doi.org/10.1109/TSP.2019.2894801, Google ScholarCrossref
- 43. G. Froyland and E. Kwok, J. Nonlinear Sci. (2017). Google Scholar
- 44. C. Moosmüller, F. Dietrich, and I. G. Kevrekidis, arXiv:1907.08260v2 (2019). Google Scholar
- 45. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 712 (1980). https://doi.org/10.1103/PhysRevLett.45.712, Google ScholarCrossref, ISI
- 46. D. Aeyels, SIAM J. Control Optim. 19, 595 (1981). https://doi.org/10.1137/0319037, Google ScholarCrossref
- 47. J. Stark, D. Broomhead, M. Davies, and J. Huke, Nonlinear Anal. Theory Methods Appl. 30, 5303 (1997). https://doi.org/10.1016/S0362-546X(96)00149-6, Google ScholarCrossref
- 48. J. Stark, J. Nonlinear Sci. 9, 255 (1999). https://doi.org/10.1007/s003329900072, Google ScholarCrossref
- 49. J. Stark, D. Broomhead, M. Davies, and J. Huke, J. Nonlinear Sci. 13, 519 (2003). https://doi.org/10.1007/s00332-003-0534-4, Google ScholarCrossref
- 50. H. Whitney, Ann. Math. 37, 645 (1936). https://doi.org/10.2307/1968482, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.