ABSTRACT
This study attempted to propose an efficient scheme at the coupled cluster linear response (CCLR) level to perform large-scale excited-state calculations of not only local excitations but also nonlocal ones such as charge transfers and transitions between delocalized orbitals. Although standard applications of fragmentation techniques to the excited-state calculations brought about the limitations that could only deal with local excitations, this study solved the problem by evaluating the excited states as the poles of dynamical polarizability. Because such an approach previously succeeded at the time-dependent density functional theory level [H. Nakai and T. Yoshikawa, J. Chem. Phys. 146, 124123 (2017)], this study was considered as an extension to the CCLR level. To evaluate the dynamical polarizability at the CCLR level, we revisited three equivalent formulas, namely, coupled-perturbed self-consistent field (CPSCF), random phase approximation (RPA), and Green’s function (GF). We further extended these formulas to the linear-scaling methods based on the divide-and-conquer (DC) technique. We implemented the CCLR with singles and doubles (CCSDLR) program for the six schemes, i.e., the standard and DC-type CPSCF, RPA, and GF. Illustrative applications of the present methods demonstrated the accuracy and efficiency. Although the standard three treatments could exactly reproduced the conventional frequency-domain CCSDLR results, their computational costs were commonly higher than that of the conventional ones due to large amount of computations for individual frequencies of the external electric field. The DC-type treatments, which approximately reproduced the conventional results, could achieve quasilinear scaling computational costs. Among them, DC-GF was found to exhibit the best performance.
ACKNOWLEDGMENTS
Some of the presented calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, Institutes of Natural Sciences (NINS). This work was supported in part by a Grant-in-Aid for Scientific Research (S) “KAKENHI Grant No. JP18H05264” from the Japan Society for the Promotion of Science (JSPS). This work was also supported by Element Strategy Initiative of Ministry of Education, Culture, Sports, Science and Technolog (MEXT), Grant Number JPMXP0112101003.
- 1. T. D. Crawford and H. F. Schaefer III, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (Wiley, New York, 2000), Vol. 14, pp. 33–136. Google ScholarCrossref
- 2. I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics (Cambridge University Press, Cambridge, 2009). Google ScholarCrossref
- 3. H. Nakatsuji and K. Hirao, J. Chem. Phys. 68, 2053 (1978). https://doi.org/10.1063/1.436028, Google ScholarScitation, ISI
- 4. H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978). https://doi.org/10.1016/0009-2614(78)89113-1, Google ScholarCrossref
- 5. H. Nakatsuji, Chem. Phys. Lett. 67, 329 (1979). https://doi.org/10.1016/0009-2614(79)85172-6, Google ScholarCrossref, ISI
- 6. H. Nakatsuji, Chem. Phys. Lett. 67, 334 (1979). https://doi.org/10.1016/0009-2614(79)85173-8, Google ScholarCrossref, ISI
- 7. M. Ehara, J. Hasegawa, and H. Nakatsuji, in Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), pp. 1099–1141. Google ScholarCrossref
- 8. H. J. Monkhorst, Int. J. Quantum Chem. 12, 421 (1977). https://doi.org/10.1002/qua.560120850, Google ScholarCrossref
- 9. D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39, 325 (1979). https://doi.org/10.1016/0301-0104(79)80153-6, Google ScholarCrossref, ISI
- 10. H. Sekino and R. Bartlett, Int. J. Quantum. Chem. Symp. 26, 255 (1984). https://doi.org/10.1002/qua.560260826, Google ScholarCrossref
- 11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyenger, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, T. Nakajima, Y. Honda, O. Kitao, H. Naki, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Damenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskotz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh, PA, 2003. Google Scholar
- 12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, gaussian 16, Revision B.01, Gaussian, Inc., Wallingford, CT, 2016. Google Scholar
- 13. Linear-scaling Techniques in Computational Chemistry and Physics, edited by R. G. Zalesiny, M. Papadopoulos, P. G. Mezey, and J. Leszszynski (Springer, Amsterdam, 2011). Google ScholarCrossref
- 14. Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, edited by M. S. Gordon (Wiley, Hoboken, NJ, 2017). Google ScholarCrossref
- 15. C. Y. Yam, S. Yokojima, and G. H. Chen, Phys. Rev. B 68, 153105 (2003). https://doi.org/10.1103/physrevb.68.153105, Google ScholarCrossref
- 16. F. Wang, C. Y. Yam, and G.-H. Chen, J. Chem. Phys. 126, 244102 (2007). https://doi.org/10.1063/1.2746034, Google ScholarScitation, ISI
- 17. Y. Mochizuki, S. Koikegami, S. Amari, K. Segawa, K. Kitaura, and T. Nakano, Chem. Phys. Lett. 406, 283 (2005). https://doi.org/10.1016/j.cplett.2005.03.008, Google ScholarCrossref
- 18. Y. Mochizuki, K. Tanaka, K. Yamashita, T. Ishikawa, T. Nakano, S. Amari, K. Segawa, T. Murase, H. Tokiwa, and M. Sakurai, Theor. Chem. Acc. 117, 541 (2007). https://doi.org/10.1007/s00214-006-0181-6, Google ScholarCrossref
- 19. M. Chiba, D. G. Fedorov, and K. Kitaura, J. Chem. Phys. 127, 104108 (2007). https://doi.org/10.1063/1.2772850, Google ScholarScitation, ISI
- 20. S. Hirata, M. Valiev, M. Dupuis, S. S. Xantheas, S. Sugiki, and H. Sekino, Mol. Phys. 103, 2255 (2005). https://doi.org/10.1080/00268970500083788, Google ScholarCrossref, ISI
- 21. H. Nakatsuji, T. Miyahara, and R. Fukuda, J. Chem. Phys. 126, 084104 (2007). https://doi.org/10.1063/1.2464113, Google ScholarScitation, ISI
- 22. S. Coriani, S. Høst, B. Jansik, L. Thøgersen, J. Olsen, P. Jørgensen, S. Reine, F. Pawlowski, T. Helgaker, and P. Salek, J. Chem. Phys. 126, 154108 (2007). https://doi.org/10.1063/1.2715568, Google ScholarScitation, ISI
- 23. K. Fujimoto and W. Yang, J. Chem. Phys. 129, 054102 (2008). https://doi.org/10.1063/1.2958257, Google ScholarScitation, ISI
- 24. Q. Li, Q. Li, and Z. Shuai, Synth. Met. 158, 330 (2008). https://doi.org/10.1016/j.synthmet.2008.02.002, Google ScholarCrossref
- 25. M. Miura and Y. Aoki, J. Comput. Chem. 30, 2213 (2009). https://doi.org/10.1002/jcc.21206, Google ScholarCrossref
- 26. T. Yoshikawa, M. Kobayashi, A. Fujii, and H. Nakai, J. Phys. Chem. B 117, 5565 (2013). https://doi.org/10.1021/jp401819d, Google ScholarCrossref
- 27. N. Komoto, T. Yoshikawa, J. Ono, Y. Nishimura, and H. Nakai, J. Chem. Theory Comput. 15, 1719 (2019). https://doi.org/10.1021/acs.jctc.8b01214, Google ScholarCrossref
- 28. J. Neugebauer, J. Chem. Phys. 126, 134116 (2007). https://doi.org/10.1063/1.2713754, Google ScholarScitation, ISI
- 29. A. Krishtal, D. Ceresoli, and M. Pavanello, J. Chem. Phys. 142, 154116 (2015). https://doi.org/10.1063/1.4918276, Google ScholarScitation, ISI
- 30. D. V. Chulhai and L. Jensen, Phys. Chem. Chem. Phys. 18, 21032 (2016). https://doi.org/10.1039/c6cp00310a, Google ScholarCrossref
- 31. F. Wu, W. Liu, Y. Zhang, and Z. Li, J. Chem. Theory Comput. 7, 3643 (2011). https://doi.org/10.1021/ct200225v, Google ScholarCrossref
- 32. J. Liu and J. Herbert, J. Chem. Phys. 143, 034106 (2015). https://doi.org/10.1063/1.4926837, Google ScholarScitation, ISI
- 33. Q. Ge, Y. Mao, A. F. White, E. Epifanovsky, K. D. Closser, and M. Head-Gordon, J. Chem. Phys. 146, 044111 (2017). https://doi.org/10.1063/1.4973611, Google ScholarScitation, ISI
- 34. T. Fujita and Y. Mochizuki, J. Phys. Chem. A 122, 3886 (2018). https://doi.org/10.1021/acs.jpca.8b00446, Google ScholarCrossref
- 35. W. Yang, Phys. Rev. Lett. 66, 1438 (1991). https://doi.org/10.1103/physrevlett.66.1438, Google ScholarCrossref, ISI
- 36. W. Yang and T. S. Lee, J. Chem. Phys. 103, 5674 (1995). https://doi.org/10.1063/1.470549, Google ScholarScitation, ISI
- 37. T. Akama, M. Kobayashi, and H. Nakai, J. Comput. Chem. 28, 2003 (2007). https://doi.org/10.1002/jcc.20707, Google ScholarCrossref
- 38. M. Kobayashi, Y. Imamura, and H. Nakai, J. Chem. Phys. 127, 074103 (2007). https://doi.org/10.1063/1.2761878, Google ScholarScitation, ISI
- 39. M. Kobayashi and H. Nakai, J. Chem. Phys. 129, 044103 (2008). https://doi.org/10.1063/1.2956490, Google ScholarScitation, ISI
- 40. M. Kobayashi and H. Nakai, J. Chem. Phys. 131, 114108 (2009). https://doi.org/10.1063/1.3211119, Google ScholarScitation, ISI
- 41. H. Nishizawa, Y. Nishimura, M. Kobayashi, S. Irle, and H. Nakai, J. Comput. Chem. 37, 1983 (2016). https://doi.org/10.1002/jcc.24419, Google ScholarCrossref
- 42. T. Yoshikawa, T. Doi, and H. Nakai, Chem. Phys. Lett. 725, 18 (2019). https://doi.org/10.1016/j.cplett.2019.04.001, Google ScholarCrossref
- 43. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 77, 085103 (2008). https://doi.org/10.1103/physrevb.77.085103, Google ScholarCrossref
- 44. L. W. Wang, Z. J. Zhao, and J. Mera, Phys. Rev. B 77, 165113 (2008). https://doi.org/10.1103/physrevb.77.165113, Google ScholarCrossref
- 45. X. He and K. M. Merz, Jr., J. Chem. Theor. Comput. 6, 405 (2010). https://doi.org/10.1021/ct9006635, Google ScholarCrossref
- 46. Z. H. He, X. B. Ye, and B. C. Pan, J. Chem. Phys. 150, 114107 (2019). https://doi.org/10.1063/1.5088918, Google ScholarScitation, ISI
- 47. M. Kobayashi and T. Taketsugu, Chem. Lett. 45, 1268 (2016). https://doi.org/10.1246/cl.160699, Google ScholarCrossref
- 48. M. Kobayashi, T. Fujimori, and T. Taketsugu, J. Comput. Chem. 39, 909 (2018). https://doi.org/10.1002/jcc.25174, Google ScholarCrossref
- 49. T. Touma, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 485, 247 (2010). https://doi.org/10.1016/j.cplett.2009.12.043, Google ScholarCrossref
- 50. H. Nakai and T. Yoshikawa, J. Chem. Phys. 146, 124123 (2017). https://doi.org/10.1063/1.4978952, Google ScholarScitation, ISI
- 51. K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys. Rev. 108, 507 (1957). https://doi.org/10.1103/physrev.108.507, Google ScholarCrossref
- 52. M. Baranger, Phys. Rev. 120, 957 (1960). https://doi.org/10.1103/physrev.120.957, Google ScholarCrossref
- 53. R. Zwanzig, Physica 30, 1109 (1964). https://doi.org/10.1016/0031-8914(64)90102-8, Google ScholarCrossref
- 54. D. P. Santry and T. E. Raidy, Chem. Phys. Lett. 61, 413 (1979). https://doi.org/10.1016/0009-2614(79)80676-4, Google ScholarCrossref
- 55. R. A. Ferrell and T. T. Quinn, Phys. Rev. 108, 570 (1957). https://doi.org/10.1103/physrev.108.570, Google ScholarCrossref
- 56. J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 (1959). https://doi.org/10.1007/bf02726371, Google ScholarCrossref
- 57. D. J. Rowe, Nucl. Phys. 80, 209 (1966). https://doi.org/10.1016/0029-5582(66)90837-6, Google ScholarCrossref
- 58. R. A. Ferrell, Phys. Rev. 107, 1631 (1957). https://doi.org/10.1103/physrev.107.1631, Google ScholarCrossref
- 59. D. J. Thouless, Nucl. Phys. 22, 78 (1961). https://doi.org/10.1016/0029-5582(61)90364-9, Google ScholarCrossref, ISI
- 60. Y. Ikabata, Q. Wang, T. Yoshikawa, A. Ueda, T. Murata, K. Kariyazono, M. Moriguchi, H. Okamoto, Y. Morita, and H. Nakai, npj Quantum Mater. 2, 27 (2017). https://doi.org/10.1038/s41535-017-0033-8, Google ScholarCrossref
- 61. D. P. O’Neill, M. Kállay, and J. Gauss, J. Chem. Phys. 121, 9257 (2004). https://doi.org/10.1063/1.1805494, Google ScholarScitation
- 62. M. Kállay and J. Gauss, J. Mol. Struct.: THEOCHEM 768, 71 (2006). https://doi.org/10.1016/j.theochem.2006.05.021, Google ScholarCrossref
- 63. J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 99, 5178 (1993). https://doi.org/10.1063/1.466019, Google ScholarScitation, ISI
- 64. H. Sekino and R. J. Bartlett, Chem. Phys. Lett. 225, 486 (1994). https://doi.org/10.1016/0009-2614(94)87116-7, Google ScholarCrossref
- 65. H. Sekino and R. J. Bartlett, Adv. Quantum Chem. 35, 149 (1999). https://doi.org/10.1016/s0065-3276(08)60459-1, Google ScholarCrossref
- 66. P. B. Rozyczko, S. A. Perera, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 107, 6736 (1997). https://doi.org/10.1063/1.474917, Google ScholarScitation, ISI
- 67. E. R. Davidson, J. Comput. Phys. 17, 87 (1975). https://doi.org/10.1016/0021-9991(75)90065-0, Google ScholarCrossref, ISI
- 68. H. Nakai, Chem. Phys. Lett. 363, 73 (2002). https://doi.org/10.1016/s0009-2614(02)01151-x, Google ScholarCrossref
- 69. H. P. Roy, A. Gupta, and P. K. Mukherjee, Int. J. Quantum Chem. 4, 75 (1975). https://doi.org/10.1002/qua.560090109, Google ScholarCrossref
- 70. A. Dalgamo, A. L. Ford, and J. C. Browne, Phys. Rev. Lett. 27, 1033 (1971). https://doi.org/10.1103/physrevlett.27.1033, Google ScholarCrossref
- 71. H. Nakai, T. Yoshikawa, and Y. Nonaka, J. Comput. Chem. 38, 7 (2017). https://doi.org/10.1002/jcc.24507, Google ScholarCrossref
- 72. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153, Google ScholarScitation, ISI
- 73. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112, Google ScholarCrossref, ISI
- 74. D. A. Case, R. M. Betz, D. S. Cerutti, T. E. Cheatham III, T. A. Darden, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, N. Homeyer, N. S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T. S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K. M. Merz, G. Monard, H. Nguyen, H. T. Nguyen, I. Omelyan, A. Onufriev, D. R. Roe, A. Roitberg, C. Sagui, C. L. Simmerling, W. M. Botello-Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, L. Xiao, and P. A. Kollman, AMBER 2016, University of California, San Francisco, 2016. Google Scholar
- 75. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comput. Chem. 25, 1157 (2004). https://doi.org/10.1002/jcc.20035, Google ScholarCrossref, ISI
- 76. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869, Google ScholarScitation, ISI
- 77. H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001). https://doi.org/10.1063/1.1383587, Google ScholarScitation, ISI
- 78. N. S. Bayliss and G. Wills-Joenson, Spectrochim. Acta, Part A 24, 551 (1968). https://doi.org/10.1016/0584-8539(68)80087-x, Google ScholarCrossref
Article Metrics
Views
510
Citations
Crossref
0
Web of Science
ISI
3
Altmetric
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.