ABSTRACT
We propose that the carbon dimer defect in hexagonal boron nitride gives rise to the ubiquitous narrow luminescence band with a zero-phonon line of 4.08 eV (usually labeled the 4.1 eV band). Our first-principles calculations are based on hybrid density functionals that provide a reliable description of wide bandgap materials. The calculated zero-phonon line energy of 4.3 eV is close to the experimental value, and the deduced Huang-Rhys factor of , indicating modest electron-phonon coupling, falls within the experimental range. The optical transition occurs between two localized π-type defects states, with a very short radiative lifetime of 1.2 ns, in very good accord with experiments.
We acknowledge useful discussions with Marcus W. Doherty, Lukas Razinkovas, and Mark Turiansky. A.A. was funded by Grant No. 9.3.3.-LMT-K-712-14-0085 from the Research Council of Lithuania. M.M.S. acknowledges funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 820394 (project Asteriqs). The research reported here was also partially supported by the National Science Foundation (NSF) through the Materials Research Science and Engineering Center at UC Santa Barbara, No. DMR-1720256 (Seed). Calculations were performed at the High Performance Computing Center “HPC Saulėtekis” in the Faculty of Physics, Vilnius University. Computational resources were also provided by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by the NSF (No. ACI-1548562).
REFERENCES
- 1. D. L. Duong, S. J. Yun, and Y. H. Lee, ACS Nano 11, 11803 (2017). https://doi.org/10.1021/acsnano.7b07436, Google ScholarCrossref
- 2. G. Cassabois, P. Valvin, and B. Gil, Nat. Photonics 10, 262 (2016). https://doi.org/10.1038/nphoton.2015.277, Google ScholarCrossref, ISI
- 3. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004). https://doi.org/10.1038/nmat1134, Google ScholarCrossref, ISI
- 4. S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, Nat. Commun. 9, 2623 (2018). https://doi.org/10.1038/s41467-018-05117-4, Google ScholarCrossref
- 5. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nat. Nanotechnol. 11, 37 (2016). https://doi.org/10.1038/nnano.2015.242, Google ScholarCrossref, ISI
- 6. S. Larach and R. E. Shrader, Phys. Rev. 104, 68 (1956). https://doi.org/10.1103/PhysRev.104.68, Google ScholarCrossref
- 7. V. Solozhenko, A. Lazarenko, J.-P. Petitet, and A. Kanaev, J. Phys. Chem. Solids 62, 1331 (2001). https://doi.org/10.1016/S0022-3697(01)00030-0, Google ScholarCrossref, ISI
- 8. K. Era, F. Minami, and T. Kuzuba, J. Lumin. 24, 71 (1981). https://doi.org/10.1016/0022-2313(81)90223-4, Google ScholarCrossref
- 9. L. Museur, E. Feldbach, and A. Kanaev, Phys. Rev. B 78, 155204 (2008). https://doi.org/10.1103/PhysRevB.78.155204, Google ScholarCrossref, ISI
- 10. X. Du, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 106, 021110 (2015). https://doi.org/10.1063/1.4905908, Google ScholarScitation, ISI
- 11. A. M. Stoneham, Theory of Defects in Solids ( Oxford University Press, 2001). Google ScholarCrossref
- 12. A. Vokhmintsev, I. Weinstein, and D. Zamyatin, J. Lumin. 208, 363 (2019). https://doi.org/10.1016/j.jlumin.2018.12.036, Google ScholarCrossref, ISI
- 13. R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L. H. Tizei, and A. Zobelli, Nano Lett. 16, 4317 (2016). https://doi.org/10.1021/acs.nanolett.6b01368, Google ScholarCrossref, ISI
- 14. S. Meuret, L. H. G. Tizei, T. Cazimajou, R. Bourrellier, H. C. Chang, F. Treussart, and M. Kociak, Phys. Rev. Lett. 114, 197401 (2015). https://doi.org/10.1103/PhysRevLett.114.197401, Google ScholarCrossref
- 15. M. Uddin, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 110, 182107 (2017). https://doi.org/10.1063/1.4982647, Google ScholarScitation, ISI
- 16. A. Katzir, J. Suss, A. Zunger, and A. Halperin, Phys. Rev. B 11, 2370 (1975). https://doi.org/10.1103/PhysRevB.11.2370, Google ScholarCrossref
- 17. L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. B 97, 214104 (2018). https://doi.org/10.1103/PhysRevB.97.214104, Google ScholarCrossref, ISI
- 18. T. Korona and M. Chojecki, Int. J. Quantum Chem. 119, e25925 (2019). https://doi.org/10.1002/qua.25925, Google ScholarCrossref
- 19. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060, Google ScholarScitation, ISI
- 20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865, Google ScholarCrossref, ISI
- 21. G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair, X. Gonze, and M. Côté, Phys. Rev. B 92, 085137 (2015). https://doi.org/10.1103/PhysRevB.92.085137, Google ScholarCrossref, ISI
- 22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953, Google ScholarCrossref, ISI
- 23. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495, Google ScholarCrossref, ISI
- 24. I. Tomaszkiewicz, Polish J. Chem. 76, 891 (2002). Google Scholar
- 25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169, Google ScholarCrossref, ISI
- 26. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014). https://doi.org/10.1103/RevModPhys.86.253, Google ScholarCrossref, ISI
- 27. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009). https://doi.org/10.1103/PhysRevLett.102.016402, Google ScholarCrossref, ISI
- 28. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989). https://doi.org/10.1103/RevModPhys.61.689, Google ScholarCrossref, ISI
- 29. A. Alkauskas, J. L. Lyons, D. Steiauf, and C. G. Van de Walle, Phys. Rev. Lett. 109, 267401 (2012). https://doi.org/10.1103/PhysRevLett.109.267401, Google ScholarCrossref, ISI
- 30. T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, Phys. Rev. Lett. 117, 097402 (2016). https://doi.org/10.1103/PhysRevLett.117.097402, Google ScholarCrossref
- 31. G. Cappellini, G. Satta, M. Palummo, and G. Onida, Phys. Rev. B 64, 035104 (2001). https://doi.org/10.1103/PhysRevB.64.035104, Google ScholarCrossref
- 32. O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin, N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pantelides, and S. J. Pennycook, Nature 464, 571 (2010). https://doi.org/10.1038/nature08879, Google ScholarCrossref, ISI
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.