No Access Submitted: 12 August 2019 Accepted: 13 October 2019 Published Online: 18 November 2019
Appl. Phys. Lett. 115, 212101 (2019); https://doi.org/10.1063/1.5124153
more...View Affiliations
View Contributors
  • M. Mackoit-Sinkevičienė
  • M. Maciaszek
  • C. G. Van de Walle
  • A. Alkauskas
We propose that the carbon dimer defect C B C N in hexagonal boron nitride gives rise to the ubiquitous narrow luminescence band with a zero-phonon line of 4.08 eV (usually labeled the 4.1 eV band). Our first-principles calculations are based on hybrid density functionals that provide a reliable description of wide bandgap materials. The calculated zero-phonon line energy of 4.3 eV is close to the experimental value, and the deduced Huang-Rhys factor of S 2.0, indicating modest electron-phonon coupling, falls within the experimental range. The optical transition occurs between two localized π-type defects states, with a very short radiative lifetime of 1.2 ns, in very good accord with experiments.
We acknowledge useful discussions with Marcus W. Doherty, Lukas Razinkovas, and Mark Turiansky. A.A. was funded by Grant No. 9.3.3.-LMT-K-712-14-0085 from the Research Council of Lithuania. M.M.S. acknowledges funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 820394 (project Asteriqs). The research reported here was also partially supported by the National Science Foundation (NSF) through the Materials Research Science and Engineering Center at UC Santa Barbara, No. DMR-1720256 (Seed). Calculations were performed at the High Performance Computing Center “HPC Saulėtekis” in the Faculty of Physics, Vilnius University. Computational resources were also provided by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by the NSF (No. ACI-1548562).
  1. 1. D. L. Duong, S. J. Yun, and Y. H. Lee, ACS Nano 11, 11803 (2017). https://doi.org/10.1021/acsnano.7b07436, Google ScholarCrossref
  2. 2. G. Cassabois, P. Valvin, and B. Gil, Nat. Photonics 10, 262 (2016). https://doi.org/10.1038/nphoton.2015.277, Google ScholarCrossref, ISI
  3. 3. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004). https://doi.org/10.1038/nmat1134, Google ScholarCrossref, ISI
  4. 4. S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, Nat. Commun. 9, 2623 (2018). https://doi.org/10.1038/s41467-018-05117-4, Google ScholarCrossref
  5. 5. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nat. Nanotechnol. 11, 37 (2016). https://doi.org/10.1038/nnano.2015.242, Google ScholarCrossref, ISI
  6. 6. S. Larach and R. E. Shrader, Phys. Rev. 104, 68 (1956). https://doi.org/10.1103/PhysRev.104.68, Google ScholarCrossref
  7. 7. V. Solozhenko, A. Lazarenko, J.-P. Petitet, and A. Kanaev, J. Phys. Chem. Solids 62, 1331 (2001). https://doi.org/10.1016/S0022-3697(01)00030-0, Google ScholarCrossref, ISI
  8. 8. K. Era, F. Minami, and T. Kuzuba, J. Lumin. 24, 71 (1981). https://doi.org/10.1016/0022-2313(81)90223-4, Google ScholarCrossref
  9. 9. L. Museur, E. Feldbach, and A. Kanaev, Phys. Rev. B 78, 155204 (2008). https://doi.org/10.1103/PhysRevB.78.155204, Google ScholarCrossref, ISI
  10. 10. X. Du, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 106, 021110 (2015). https://doi.org/10.1063/1.4905908, Google ScholarScitation, ISI
  11. 11. A. M. Stoneham, Theory of Defects in Solids ( Oxford University Press, 2001). Google ScholarCrossref
  12. 12. A. Vokhmintsev, I. Weinstein, and D. Zamyatin, J. Lumin. 208, 363 (2019). https://doi.org/10.1016/j.jlumin.2018.12.036, Google ScholarCrossref, ISI
  13. 13. R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L. H. Tizei, and A. Zobelli, Nano Lett. 16, 4317 (2016). https://doi.org/10.1021/acs.nanolett.6b01368, Google ScholarCrossref, ISI
  14. 14. S. Meuret, L. H. G. Tizei, T. Cazimajou, R. Bourrellier, H. C. Chang, F. Treussart, and M. Kociak, Phys. Rev. Lett. 114, 197401 (2015). https://doi.org/10.1103/PhysRevLett.114.197401, Google ScholarCrossref
  15. 15. M. Uddin, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 110, 182107 (2017). https://doi.org/10.1063/1.4982647, Google ScholarScitation, ISI
  16. 16. A. Katzir, J. Suss, A. Zunger, and A. Halperin, Phys. Rev. B 11, 2370 (1975). https://doi.org/10.1103/PhysRevB.11.2370, Google ScholarCrossref
  17. 17. L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. B 97, 214104 (2018). https://doi.org/10.1103/PhysRevB.97.214104, Google ScholarCrossref, ISI
  18. 18. T. Korona and M. Chojecki, Int. J. Quantum Chem. 119, e25925 (2019). https://doi.org/10.1002/qua.25925, Google ScholarCrossref
  19. 19. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060, Google ScholarScitation, ISI
  20. 20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865, Google ScholarCrossref, ISI
  21. 21. G. Antonius, S. Poncé, E. Lantagne-Hurtubise, G. Auclair, X. Gonze, and M. Côté, Phys. Rev. B 92, 085137 (2015). https://doi.org/10.1103/PhysRevB.92.085137, Google ScholarCrossref, ISI
  22. 22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953, Google ScholarCrossref, ISI
  23. 23. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495, Google ScholarCrossref, ISI
  24. 24. I. Tomaszkiewicz, Polish J. Chem. 76, 891 (2002). Google Scholar
  25. 25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169, Google ScholarCrossref, ISI
  26. 26. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014). https://doi.org/10.1103/RevModPhys.86.253, Google ScholarCrossref, ISI
  27. 27. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009). https://doi.org/10.1103/PhysRevLett.102.016402, Google ScholarCrossref, ISI
  28. 28. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989). https://doi.org/10.1103/RevModPhys.61.689, Google ScholarCrossref, ISI
  29. 29. A. Alkauskas, J. L. Lyons, D. Steiauf, and C. G. Van de Walle, Phys. Rev. Lett. 109, 267401 (2012). https://doi.org/10.1103/PhysRevLett.109.267401, Google ScholarCrossref, ISI
  30. 30. T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, Phys. Rev. Lett. 117, 097402 (2016). https://doi.org/10.1103/PhysRevLett.117.097402, Google ScholarCrossref
  31. 31. G. Cappellini, G. Satta, M. Palummo, and G. Onida, Phys. Rev. B 64, 035104 (2001). https://doi.org/10.1103/PhysRevB.64.035104, Google ScholarCrossref
  32. 32. O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin, N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pantelides, and S. J. Pennycook, Nature 464, 571 (2010). https://doi.org/10.1038/nature08879, Google ScholarCrossref, ISI
  1. © 2019 Author(s). Published under license by AIP Publishing.