No Access Submitted: 19 July 2019 Accepted: 13 September 2019 Published Online: 01 October 2019
Appl. Phys. Lett. 115, 142403 (2019);
more...View Affiliations
View Contributors
  • T. Usami
  • M. Itoh
  • T. Taniyama
We use ferromagnetic resonance measurements to study the compositional dependence of the Gilbert damping constant α for Fe100–xRhx thin films. We find that α decreases upon increasing the Rh composition up to x =20, whereas it increases for 20 < x < 27. The minimum value of α around x =20 is as low as ( 9 ± 1 ) × 10 4, which is comparable to that of Fe75Co25 alloys—the lowest damping material among metallic ferromagnets. Considering the compositional dependence of the density of states at the Fermi level, we attribute the low damping to the decrease in the density of states at x =20. An enhancement in α at a higher Rh composition likely arises from the evolution of possible antiferromagnetic correlation. The results demonstrate that Fe100– xRhx is a promising low-damping material for spintronic applications.
This work was supported in part by JST CREST Grant No. JPMJCR18J1; JSPS KAKENHI Grant Nos. JP17H03377, JP18F18353, and JP17J08317; the Asahi Glass Foundation; and the Kato foundation for Promotion of Science.
  1. 1. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008)., Google ScholarCrossref, ISI
  2. 2. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008)., Google ScholarCrossref, ISI
  3. 3. A. V. V. Chumak, V. I. I. Vasyuchka, A. A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015)., Google ScholarCrossref, ISI
  4. 4. S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin Current ( Oxford University Press, New York, 2012). Google ScholarCrossref
  5. 5. T. A. Moore, P. Möhrke, L. Heyne, A. Kaldun, M. Kläui, D. Backes, J. Rhensius, L. J. Heyderman, J.-U. Thiele, G. Woltersdorf, A. Fraile Rodríguez, F. Nolting, T. O. Menteş, M. Á. Niño, A. Locatelli, A. Potenza, H. Marchetto, S. Cavill, and S. S. Dhesi, Phys. Rev. B 82, 094445 (2010)., Google ScholarCrossref
  6. 6. T. Manago, K. Yamanoi, S. Kasai, and S. Mitani, J. Appl. Phys. 117, 17D121 (2015)., Google ScholarScitation, ISI
  7. 7. T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)., Google ScholarCrossref, ISI
  8. 8. A. Barman and J. Sinha, Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures ( Springer International Publishing, Cham, 2018). Google ScholarCrossref
  9. 9. B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 066604 (2011)., Google ScholarCrossref, ISI
  10. 10. H. Chang, P. Li, W. Zhang, T. Liu, A. Hoffmann, L. Deng, and M. Wu, IEEE Magn. Lett. 5, 1 (2014)., Google ScholarCrossref, ISI
  11. 11. M. A. W. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H. T. Nembach, O. Eriksson, O. Karis, and J. M. Shaw, Nat. Phys. 12, 839 (2016)., Google ScholarCrossref, ISI
  12. 12. A. J. Lee, J. T. Brangham, Y. Cheng, S. P. White, W. T. Ruane, B. D. Esser, D. W. McComb, P. C. Hammel, and F. Yang, Nat. Commun. 8, 234 (2017)., Google ScholarCrossref
  13. 13. M. Fallot, Ann. Phys. 10, 291 (1938)., Google ScholarCrossref
  14. 14. I. Suzuki, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 104, 022401 (2014)., Google ScholarScitation, ISI
  15. 15. I. Suzuki, T. Naito, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 107, 082408 (2015)., Google ScholarScitation, ISI
  16. 16. T. Naito, I. Suzuki, M. Itoh, and T. Taniyama, J. Appl. Phys. 109, 07C911 (2011)., Google ScholarScitation, ISI
  17. 17. V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, and J. B. Staunton, Appl. Phys. Lett. 108, 192405 (2016)., Google ScholarScitation, ISI
  18. 18. T. Usami, I. Suzuki, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 108, 232404 (2016)., Google ScholarScitation, ISI
  19. 19. I. Suzuki, T. Koike, M. Itoh, T. Taniyama, and T. Sato, J. Appl. Phys. 105, 07E501 (2009)., Google ScholarScitation, ISI
  20. 20. L. C. Phillips, R. O. Cherifi, V. Ivanovskaya, A. Zobelli, I. C. Infante, E. Jacquet, N. Guiblin, A. A. Ünal, F. Kronast, B. Dkhil, A. Barthélémy, M. Bibes, and S. Valencia, Sci. Rep. 5, 10026 (2015)., Google ScholarCrossref, ISI
  21. 21. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D. A. Muller, L.-Q. Chen, J. Levy, and D. G. Schlom, Science 324, 367 (2009)., Google ScholarCrossref, ISI
  22. 22. A. Jezierski, Solid State Commun. 86, 685 (1993)., Google ScholarCrossref
  23. 23. M. A. de Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, New J. Phys. 15, 013008 (2013)., Google ScholarCrossref, ISI
  24. 24. L. J. J. Swartzendruber, Bull. Alloy Phase Diagrams 5, 456 (1984)., Google ScholarCrossref
  25. 25. G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, Phys. Rev. 131, 183 (1963)., Google ScholarCrossref, ISI
  26. 26. A. B. Mei, Y. Tang, J. L. Grab, J. Schubert, D. C. Ralph, and D. G. Schlom, Appl. Phys. Lett. 113, 082403 (2018)., Google ScholarScitation, ISI
  27. 27. A. Kumar, F. Pan, S. Husain, S. Akansel, R. Brucas, L. Bergqvist, S. Chaudhary, and P. Svedlindh, Phys. Rev. B 96, 1 (2017)., Google ScholarCrossref
  28. 28. Q. Qin, S. He, W. Song, P. Yang, Q. Wu, Y. P. Feng, and J. Chen, Appl. Phys. Lett. 110, 112401 (2017)., Google ScholarScitation, ISI
  29. 29. C. Scheck, L. Cheng, I. Barsukov, Z. Frait, and W. E. Bailey, Phys. Rev. Lett. 98, 117601 (2007)., Google ScholarCrossref
  30. 30. I. Barsukov, S. Mankovsky, A. Rubacheva, R. Meckenstock, D. Spoddig, J. Lindner, N. Melnichak, B. Krumme, S. I. Makarov, H. Wende, H. Ebert, and M. Farle, Phys. Rev. B 84, 180405(R) (2011)., Google ScholarCrossref, ISI
  31. 31. Y. Zhao, Q. Song, S.-H. Yang, T. Su, W. Yuan, S. S. P. Parkin, J. Shi, and W. Han, Sci. Rep. 6, 22890 (2016)., Google ScholarCrossref, ISI
  32. 32. M. A. W. Schoen, J. Lucassen, H. T. Nembach, B. Koopmans, T. J. J. Silva, C. H. Back, and J. M. Shaw, Phys. Rev. B 95, 134411 (2017)., Google ScholarCrossref
  33. 33. S. Husain, S. Akansel, A. Kumar, P. Svedlindh, and S. Chaudhary, Sci. Rep. 6, 28692 (2016)., Google ScholarCrossref
  34. 34. C. Scheck, L. Cheng, and W. E. Bailey, Appl. Phys. Lett. 88, 252510 (2006)., Google ScholarScitation, ISI
  35. 35. J. M. Lock, Br. J. Appl. Phys. 17, 1645 (1966)., Google ScholarCrossref, ISI
  36. 36. M. A. W. Schoen, J. M. Shaw, H. T. Nembach, M. Weiler, and T. J. Silva, Phys. Rev. B 92, 184417 (2015)., Google ScholarCrossref
  37. 37. V. Kamberský, Can. J. Phys. 48, 2906 (1970)., Google ScholarCrossref
  38. 38. L. Bainsla, R. Yilgin, M. Tsujikawa, K. Z. Suzuki, M. Shirai, and S. Mizukami, J. Phys. D: Appl. Phys. 51, 495001 (2018)., Google ScholarCrossref
  39. 39. H. Hasegawa, J. Magn. Magn. Mater. 66, 175 (1987)., Google ScholarCrossref
  40. 40. J. A. Arregi, M. Horký, K. Fabianová, R. Tolley, E. E. Fullerton, and V. Uhlíř, J. Phys. D: Appl. Phys. 51, 105001 (2018)., Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.