No Access Submitted: 04 July 2019 Accepted: 23 October 2019 Published Online: 26 November 2019
Journal of Renewable and Sustainable Energy 11, 063303 (2019); https://doi.org/10.1063/1.5118784
Although renewable energy production is widely accepted as clean, it is not necessarily environmental neutral since, for example, wind turbines kill large numbers of airborne animals such as bats. Consequently, stakeholders involved in the planning and operation of wind turbines are often in conflict when trying to reconcile both goals, namely, promoting wind energy production and protecting bats. We report the responses to an online questionnaire sent out to stakeholders to assess this conflict. More than 80% of stakeholders acknowledged the conflict between bat conservation and wind energy production; yet, the majority was confident about solutions and all desired an ecologically sustainable energy transition. All groups, except members of the wind energy sector, disagreed with the statements that wind energy production is of higher priority than biodiversity protection and that global warming is more critical than the biodiversity crisis. All groups agreed that more measures have to be taken to make wind energy production ecologically sustainable and that the society should be included to pay for the implementation of these measures. All stakeholders except for members of the wind energy sector agreed on that revenue losses from wind energy production and delays in the transition process should be acceptable to resolve the green–green dilemma. Among offered choices, most stakeholders suggested engaging in more research, improving the efficiency of energy use and implementing context dependent cut-in speed during wind turbine operation. The suggestion to weaken the legal protection of wildlife species was dismissed by all, underlining the consensus to protect biodiversity.
We thank all participants of our survey for taking the time to answer the questionnaire. Further, we would like to thank the attendants of the conference “evidenzbasierter Fledermausschutz in Windkraftvorhaben” for the discussion of this topic. The authors declare no conflict of interest.
  1. 1. AGEE-Stat, “ Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland,” See http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/zeitreihen-zur-entwicklung-der-erneuerbaren-energien-in-deutschland-1990-2016.pdf?__blob=publicationFile&v=12, last accessed 21 January 2018. Google Scholar
  2. 2. Arnett, E. B., Huso, M. M., Schirmacher, M. R., and Hayes, J. P., “ Altering turbine speed reduces bat mortality at wind‐energy facilities,” Front. Ecol. Environ. 9, 209–214 (2011). https://doi.org/10.1890/100103, Google ScholarCrossref
  3. 3. Arnett, E. B., Baerwald, E. F., Mathews, F., Rodrigues L., Rodriguez-Duran, A., Rydell, J., Villegas-Patraca, R., and Voigt, C. C., “ Impacts of wind energy development on bats: A global perspective,” in Bats in the Anthropocene, edited by C. C. Voigt and T. Kingston ( Springer, 2016). Google ScholarCrossref
  4. 4. Baerwald, E. F., D'Amours, G. H., Klug, B. J., and Barclay, M. R., “ Barotrauma is a significant cause of bat fatalities at wind turbines,” Curr. Biol. 18, R695–R696 (2008). https://doi.org/10.1016/j.cub.2008.06.029, Google ScholarCrossref
  5. 5. Behr, O., Brinkmann, R., Hochradel, K., Mages, J., Korner-Nievergelt, F., Reinhard, H., and Nagy, M., “ Bestimmung des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen in der Planungspraxis,” Endbericht des Forschungsvorhabens gefördert durch das Bundesministerium für Wirtschaft und Energie, Report No. RENEBAT 3, Universität Erlangen-Nürnberg Lehrstuhl für Sensorik, Erlangen/Freiburg/Ettiswil, 2018. Google Scholar
  6. 6. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F., “ Impacts of climate change on the future of biodiversity: Biodiversity and climate change,” Ecol. Lett. 15, 365–377 (2012). https://doi.org/10.1111/j.1461-0248.2011.01736.x, Google ScholarCrossref
  7. 7. Blankenhorn, V. and Resch, B., “ Determination of suitable areas for the generation of wind energy in Germany: Potential areas of the present and future,” ISPRS Intern. Geo-Inf. 3, 942–967 (2014). https://doi.org/10.3390/ijgi3030942, Google ScholarCrossref
  8. 8. BMU, www.bmu.de/PM6894 for “ Bundesregierung legt Grundlage für besseren Schutz der Meere” (2017). Google Scholar
  9. 9. Brinkmann, R., Behr, O., Korner-Nievergelt, F., Mages, J., Niermann, I., and Reich, M., Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen ( Cuvillier Verlag, Göttingen, 2011), p. 457. Google Scholar
  10. 10. Bryman, A., “Social Research Methods, 3rd ed. ( Oxford University Press, New York, 2008). Google Scholar
  11. 11. Deutsche Windguard, “ Status des Windenergieausbaus an Land–Jahr 2018,” See www.windguard.de, last accessed 10 April 2019. Google Scholar
  12. 12. Dietz, M., Krannich, E., and Weitzel, M., “ Arbeitshilfe zur Berücksichtigung des Fledermausschutzes bei der Genehmigung von Windenergieanlagen (WEA),” in Thüringen ( Institut für Tierökologie und Naturbildung, Gonterskirchen, 2015). Google Scholar
  13. 13. Donahue, M. Z., “ Ancient forest home of squatter communities is doomed by coal,” National Geographic, 13 April 2018. Google Scholar
  14. 14. Dürr, T., “ Fledermäuse als Opfer von Windenergieanlagen in Deutschland,” Nyctalus N.F. 8, 115–118 (2002). Google Scholar
  15. 15. Dürr, T. and Bach, L., “ Fledermäuse als Schlagopfer von WEA – Stand der Erfahrungen mit Einblick in die bundesweite Fundkartei,” Bremer Beitr. Naturk. Naturschutz 7, 253–263 (2004). Google Scholar
  16. 16. Erneuerbare-Energien-Gesetz from 21 July 2014 (BGBl. I S. 1066), last changed following article 1 on 29 June 2015 (BGBl. I S. 1010). Google Scholar
  17. 17. Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M. R., Szymanski, J. A., Weller, T. J., Russell, A. L., Loeb, S. C., Medellin, R. A., and McGuire, L. P., “ Fatalities at wind turbines may threaten population viability of a migratory bat,” Biol. Conserv. 209, 172–177 (2017). https://doi.org/10.1016/j.biocon.2017.02.023, Google ScholarCrossref
  18. 18. Fritze, M., Lehnert, L. S., Heim, O., Lindecke, O., Roeleke, M., and Voigt, C. C., “ Fledermausschutz im Schatten der Windenergie: Deutschlands Experten vermissen Transparenz und bundesweite Standards in den Genehmigungsverfahren,” Naturschutz Landschaftsplan. 51, 20–27 (2019). Google Scholar
  19. 19. Gasparatos, A., Doll, C. N., Esteban, M., Ahmed, A., and Olang, T. A., “ Renewable energy and biodiversity: Implications for transitioning to a green economy,” Renewable Sustainable Energy Rev. 70, 161–184 (2017). https://doi.org/10.1016/j.rser.2016.08.030, Google ScholarCrossref
  20. 20. Grilli, G., Balest, J., De Meo, I., Garegnani, G., and Paletto, A., “ Experts' opinions on the effects of renewable energy development on ecosystem services in the Alpine region,” J. Renewable Sustainable Energy 8, 013115 (2016). https://doi.org/10.1063/1.4943010, Google ScholarScitation, ISI
  21. 21. Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., and deKroon, H., “ More than 75 percent decline over 27 years in total flying insect biomass in protected areas,” PloS one 12, e0185809 (2017). https://doi.org/10.1371/journal.pone.0185809, Google ScholarCrossref
  22. 22. Hurst, J., Balzer, S., Biedermann, M., Dietz, C., Dietz, M., Höhne, E., Karst, I., Petermann, R., Schorcht, W., Steck, C., and Brinkmann, R., “ Erfassungsstandards für Fledermäuse bei Windkraftprojekten in Wäldern,” Naturschutz Landschaftsplan. 90, 157–169 (2015). Google Scholar
  23. 23. Ingersoll, T. E., Sewall, B. J., and Amelon, S. K., “ Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the Eastern United States,” PLoS One 8, e65907 (2013). https://doi.org/10.1371/journal.pone.0065907, Google ScholarCrossref
  24. 24. Jackson, A. L., “ Renewable energy vs. biodiversity: Policy conflicts and the future of nature conservation,” Global Environ. Change 21, 1195–1208 (2011). https://doi.org/10.1016/j.gloenvcha.2011.07.001, Google ScholarCrossref
  25. 25. Lütkes, S., “ Die Novelle des Bundesnaturschutzgesetzes 2017,″ Natur Recht 40, 145–150 (2018). https://doi.org/10.1007/s10357-018-3306-5, Google ScholarCrossref
  26. 26. Lukas, A. W., https://www.bundestag.de/resource/blob/506300/99f783bb535f3d4b4d6292dc4323c3a2/18-16-559-B_Anhoerung_BNatSchG_Andreas_Lukas-data.pdf for “ Stellungnahme zur Novelle des Bundesnaturschutzgesetzes für die Sachverständigen-Anhörung des Umweltausschusses am 17 Mai 2017” (2017). Google Scholar
  27. 27. Lehnert, L. S., Kramer-Schadt, S., Schönborn, S., Lindecke, O., Niermann, I., and Voigt, C. C., “ Wind farm facilities in Germany kill noctule bats from near and far,” PloS one 9, e103106 (2014). https://doi.org/10.1371/journal.pone.0103106, Google ScholarCrossref
  28. 28. Lindemann, C., Runkel, V. et al., “ Abschaltalgorithmen für Fledermäuse an Windenergieanlagen,” Naturschutz Landschaftsplan. 50, 418–425 (2018). Google Scholar
  29. 29. May, R., Masden, E. A., Bennet, F., and Perron, M., “ Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife,” J. Environ. Manage. 230, 84–93 (2018). Google ScholarCrossref
  30. 30. MKULNV NRW, “ Leitfaden Methodenhandbuch zur Artenschutzprüfung in Nordrhein-Westfalen –Bestandserfassung und Monitoring” (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV), Recklinghausen, 2016), last accessed 4 August 2019, see http://artenschutz.naturschutzinformationen.nrw.de/artenschutz/ Google Scholar
  31. 31. Møller, A. P., Nishiumi, I., Suzuki, H., Ued, K., and Mousseau, T., “ Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl,” Ecol. Ind. 24, 75–81. (2013). https://doi.org/10.1016/j.ecolind.2012.06.001, Google ScholarCrossref
  32. 32. Mousseau, T. A. and Møller, A. P., “ Landscape portrait: A look at the impacts of radioactive contaminants on Chernobyl’s wildlife,” Bull. At. Sci. 67, 38–46 (2011). https://doi.org/10.1177/0096340211399747, Google ScholarCrossref
  33. 33. MULE, Leitfaden Artenschutz an Windenergieanlagen in Sachsen-Anhalt Ministerium für Umwelt ( Landwirtschaft und Energie des Landes Sachsen-Anhalt, Magdeburg, 2018). Google Scholar
  34. 34. O'Shea, T. J., Cryan, P. M., Hayman, D. T., Plowright, R. K., and Streicker, D. G., “ Multiple mortality events in bats: A global review,” Mammal Rev. 46, 175–190 (2016). https://doi.org/10.1111/mam.12064, Google ScholarCrossref
  35. 35. Rockström, J., Steffen, W. L., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., DeWit, C. A., Huges, T.,van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svendin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Handsen, H., Walker, B., Liverman, D., Richardson, K., Crutzen, P., and Foley, J. A., “ Planetary boundaries: Exploring the safe operating space for humanity,” Nature 461, 472–475 (2009). https://doi.org/10.1038/461472a, Google ScholarCrossref
  36. 36. Rodrigues, L., Bach, L., Dubourg-Savage, M.-J., Karapandza, B., Kovac, D., Kervyn, T., Dekker, J., Kepel, A., Bach, P., Collins, J., Harbusch, C., Park, K., Micevski, B., and Minderman, J., Leitfaden für die Berücksichtigung von Fledermäusen bei Windenergieprojekten ( UNEP/EUROBATS, Bonn, 2016), p. 146. Google Scholar
  37. 37. Rohrig, K., Windenergie Report Deutschland 2017 ( Fraunhofer Verlag, Kassel, 2018). Google Scholar
  38. 38. Rydell, J., Bach, L., Dubourg-Savage, M. J., Green, M., Rodrigues, L., and Hedenström, A., “ Bat mortality at wind turbines in northwestern Europe,” Acta Chiropt. 12, 261–274 (2010). https://doi.org/10.3161/150811010X537846, Google ScholarCrossref
  39. 39. Sudhaus, D., Entwicklung der Windenergie im Wald - Ausbau, planerische Vorgaben und Empfehlungen für Windenergiestandorte auf Waldflächen in den Bundesländern ( FA Wind, Berlin, 2017). Google Scholar
  40. 40. Teel, T. L. and Manfredo, M. J., “ Understanding the diversity of public interests in wildlife conservation,” Conserv. Biol. 24, 128–139 (2010). https://doi.org/10.1111/j.1523-1739.2009.01374.x, Google ScholarCrossref
  41. 41. Van den Berg, G. P., “ Effects of the wind profile at night on wind turbine sound,” J. Sound Vib. 277, 955–970 (2004). https://doi.org/10.1016/j.jsv.2003.09.050, Google ScholarCrossref
  42. 42. Van Grieken, M. and Dower, B., “ Wind turbines and landscape,” in Wind Energy Engineering ( Elsevier, 2017), pp. 493–515. Google ScholarCrossref
  43. 43. Vaske, J. J., Beaman, J., and Sponarski, C. C., “ Rethinking internal consistency in Cronbach's alpha,” Leisure Sci. 39(2), 163–173 (2017). https://doi.org/10.1080/01490400.2015.1127189, Google ScholarCrossref
  44. 44. Voigt, C. C., “ Fledermäuse und windenergieanlagen: Ein ungelöstes ‘green-green’ dilemma,” Biodiversität Und Klima – Vernetzung Der Akteure in Deutschland XII – Dokumentation Der 12. Tagung, edited by H. Korn , K. Bockmühl , and R. Schliep (2016), S. 43 in BfN-Skripten 432. Google Scholar
  45. 45. Voigt, C. C., Lehnert, L. S., Petersons, G., Adorf, F., and Bach, L., “ Bat fatalities at wind turbines: German politics cross migratory bats,” Eur. J. Wildl. Res. 61, 213–219 (2015). https://doi.org/10.1007/s10344-015-0903-y, Google ScholarCrossref
  46. 46. Voigt, C. C., Lindecke, O., Schönborn, S., Kramer-Schadt, S., and Lehmann, D., “ Habitat use of migratory bats killed during autumn at wind turbines,” Ecol. Appl. 26, 771–783 (2016). https://doi.org/10.1890/15-0671, Google ScholarCrossref
  47. 47. Voigt, C. C., Popa-Lisseanu, A. G., Niermann, I., and Kramer-Schadt, S., “ The catchment area of wind farms for European bats: A plea for international regulations,” Biol. Conserv. 153, 80–88 (2012). https://doi.org/10.1016/j.biocon.2012.04.027, Google ScholarCrossref
  48. 48. Walter, A., Wiehe, J., Schlömer, G., Hashemifarzad, A., Wenzel, T., Albert, I., Hofmann, L., zum Hingst, J., and von Haaren, C., Naturverträgliche Energieversorgung aus 100% erneuerbaren Energien 2050 ( Bundesamt für Naturschutz, Bonn-Bad Godesberg, 2018), Skript 501, p. 160. Google Scholar
  49. 49. Zahn, A., Lustig, A., and Hammer, M., “ Potenzielle Auswirkungen von Windenergieanlagen auf Fledermauspopulationen,” ANLiegen Natur 36, 1–15 (2014). Google Scholar
  1. © 2019 Author(s). Published under license by AIP Publishing.