ABSTRACT
Si doping of (Al,Ga)N layers grown by metalorganic chemical vapor deposition induces an inclination of threading dislocations (TDs). This inclination leads to a change of the extra half-plane size of edge and mixed type dislocations. Depending on the dislocation density and the doping concentration, these effects are accompanied by the generation of tensile strain, which can also lead to crack formation. Several models have been published in the past in order to explain this process. Different models result in opposite TD inclination directions with respect to the extra half-plane position. Therefore, this work examines the correlation between the extra half-plane position and the inclination direction to clarify the origin of the tensile strain increase using scanning transmission electron microscopy. With this approach, it can be unambiguously experimentally verified that Si doping leads to a shortening of the dislocations half-plane. An analysis of in situ wafer curvature measurement proves that the increase of tensile strain in GaN caused by Si doping can be explained by this process. Aside from the inclination caused by Si doping, a TD inclination in undoped GaN layers has been analyzed. Possible explanations for the inclination process are discussed.
ACKNOWLEDGMENTS
The authors thank Olaf Fink (FBH) for support in MOCVD growth and Eva Oehlschlegel (HUB) for support in sample preparation.
- 1. M. A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, and H. Hirayama, J. Mater. Chem. C 7, 143 (2019). https://doi.org/10.1039/C8TC03825B, Google ScholarCrossref, ISI
- 2. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011). https://doi.org/10.1088/0268-1242/26/1/014036, Google ScholarCrossref, ISI
- 3. K. Ding, V. Avrutin, Ü. Özgür, and H. Morkoç, Crystals 7, 300 (2017). https://doi.org/10.3390/cryst7100300, Google ScholarCrossref, ISI
- 4. A. P. Zhang, L. B. Rowland, E. B. Kaminsky, V. Tilak, J. C. Grande, J. Teetsov, A. Vertiatchikh, and L. F. Eastman, J. Electron. Mater. 32, 388 (2003). https://doi.org/10.1007/s11664-003-0163-6, Google ScholarCrossref, ISI
- 5. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007). https://doi.org/10.1063/1.2822442, Google ScholarScitation, ISI
- 6. K. Ban, J.-I. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express 4, 052101 (2011). https://doi.org/10.1143/APEX.4.052101, Google ScholarCrossref, ISI
- 7. M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 106, 073513 (2009). https://doi.org/10.1063/1.3225920, Google ScholarScitation, ISI
- 8. M. A. Moram, T. C. Sadler, M. Häberlen, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 97, 261907 (2010). https://doi.org/10.1063/1.3532965, Google ScholarScitation, ISI
- 9. F. Brunner, A. Mogilatenko, A. Knauer, M. Weyers, and J.-T. Zettler, J. Appl. Phys. 112, 033503 (2012). https://doi.org/10.1063/1.4739278, Google ScholarScitation, ISI
- 10. A. Dadgar, P. Veit, F. Schulze, J. Bläsing, A. Krtschil, H. Witte, A. Diez, T. Hempel, J. Christen, R. Clos, and A. Krost, Thin Solid Films 515, 4356 (2007). https://doi.org/10.1016/j.tsf.2006.07.100, Google ScholarCrossref, ISI
- 11. K. Forghani, L. Schade, U. T. Schwarz, F. Lipski, O. Klein, U. Kaiser, and F. Scholz, J. Appl. Phys. 112, 093102 (2012). https://doi.org/10.1063/1.4761815, Google ScholarScitation, ISI
- 12. M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 109, 073509 (2011). https://doi.org/10.1063/1.3553841, Google ScholarScitation, ISI
- 13. J. Xie, S. Mita, A. Rice, J. Tweedie, L. Hussey, R. Collazo, and Z. Sitar, Appl. Phys. Lett. 98, 202101 (2011). https://doi.org/10.1063/1.3589978, Google ScholarScitation, ISI
- 14. A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, and F. Scholz, Phys. Rev. B 61, 2812 (2000). https://doi.org/10.1103/PhysRevB.61.2812, Google ScholarCrossref, ISI
- 15. L. T. Romano, C. G. Van de Walle, J. W. Ager, W. Götz, and R. S. Kern, J. Appl. Phys. 87, 7745 (2000). https://doi.org/10.1063/1.373529, Google ScholarScitation, ISI
- 16. S. L. Rhode, M. K. Horton, W. Y. Fu, S.-L. Sahonta, M. J. Kappers, T. J. Pennycook, C. J. Humphreys, R. O. Dusane, and M. A. Moram, Appl. Phys. Lett. 107, 243104 (2015). https://doi.org/10.1063/1.4937457, Google ScholarScitation, ISI
- 17. S. Tanaka, M. Takeuchi, and Y. Aoyagi, Jpn. J. Appl. Phys. 39, L831 (2000). https://doi.org/10.1143/JJAP.39.L831, Google ScholarCrossref, ISI
- 18. A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, “Strains and stresses in GaN heteroepitaxy—Sources and control,” in Advances in Solid State Physics (Springer, 2004), Vol. 44, p. 313. Google Scholar
- 19. T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, Phys. Rev. Lett. 110, 036103 (2013). https://doi.org/10.1103/PhysRevLett.110.036103, Google ScholarCrossref, ISI
- 20. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth 221, 334 (2000). https://doi.org/10.1016/S0022-0248(00)00709-0, Google ScholarCrossref, ISI
- 21. G. G. Stoney, Proc. R. Soc. A 82, 172 (1909). https://doi.org/10.1098/rspa.1909.0021, Google ScholarCrossref
- 22. A. E. Romanov and J. S. Speck, Appl. Phys. Lett. 83, 2569 (2003). https://doi.org/10.1063/1.1613360, Google ScholarScitation, ISI
- 23. D. M. Follstaedt, S. R. Lee, A. A. Allerman, and J. A. Floro, J. Appl. Phys. 105, 083507 (2009). https://doi.org/10.1063/1.3087515, Google ScholarScitation, ISI
- 24. P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 83, 674 (2003). https://doi.org/10.1063/1.1595133, Google ScholarScitation, ISI
- 25. T. Matsubara, K. Sugimoto, S. Goubara, R. Inomoto, N. Okada, and K. Tadatomo, J. Appl. Phys. 121, 185101 (2017). https://doi.org/10.1063/1.4983254, Google ScholarScitation, ISI
- 26. A. Dadgar, J. Bläsing, A. Diez, and A. Krost, Appl. Phys. Express 4, 011001 (2011). https://doi.org/10.1143/APEX.4.011001, Google ScholarCrossref, ISI
- 27. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004). https://doi.org/10.1063/1.1682673, Google ScholarScitation, ISI
- 28. P. M. Petroff and L. C. Kimerling, Appl. Phys. Lett. 29, 461 (1976). https://doi.org/10.1063/1.89145, Google ScholarScitation, ISI
- 29. J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger Pub. Co., 1992). Google Scholar
- 30. C. Nenstiel, M. Bägler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, and A. Hoffmann, Phys. Status Solidi RRL 9, 716 (2015). https://doi.org/10.1002/pssr.201510278, Google ScholarCrossref, ISI
- 31. Z. Bryan, I. Bryan, B. E. Gaddy, P. Reddy, L. Hussey, M. Bobea, W. Guo, M. Hoffmann, R. Kirste, J. Tweedie, M. Gerhold, D. L. Irving, Z. Sitar, and R. Collazo, Appl. Phys. Lett. 105, 222101 (2014). https://doi.org/10.1063/1.4903058, Google ScholarScitation, ISI
- 32. A. Munkholm, C. Thompson, M. V. R. Murty, J. A. Eastman, O. Auciello, G. B. Stephenson, P. Fini, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 77, 1626 (2000). https://doi.org/10.1063/1.1309023, Google ScholarScitation, ISI
- 33. J. M. Redwing, I. C. Manning, X. Weng, S. M. Eichfeld, J. D. Acord, M. A. Fanton, and D. W. Snyder, in MRS Proceedings (Cambridge University Press, 2012), p. 1396. Google Scholar
- 34. P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 97, 103534 (2005). https://doi.org/10.1063/1.1897486, Google ScholarScitation, ISI
- 35. S. Terao, M. Iwaya, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 40, L195 (2001). https://doi.org/10.1143/JJAP.40.L195, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.