No Access Submitted: 29 May 2019 Accepted: 27 July 2019 Published Online: 22 August 2019
Journal of Applied Physics 126, 085701 (2019);
more...View Affiliations
View Contributors
  • J. Weinrich
  • A. Mogilatenko
  • F. Brunner
  • C. T. Koch
  • M. Weyers
Si doping of (Al,Ga)N layers grown by metalorganic chemical vapor deposition induces an inclination of threading dislocations (TDs). This inclination leads to a change of the extra half-plane size of edge and mixed type dislocations. Depending on the dislocation density and the doping concentration, these effects are accompanied by the generation of tensile strain, which can also lead to crack formation. Several models have been published in the past in order to explain this process. Different models result in opposite TD inclination directions with respect to the extra half-plane position. Therefore, this work examines the correlation between the extra half-plane position and the inclination direction to clarify the origin of the tensile strain increase using scanning transmission electron microscopy. With this approach, it can be unambiguously experimentally verified that Si doping leads to a shortening of the dislocations half-plane. An analysis of in situ wafer curvature measurement proves that the increase of tensile strain in GaN caused by Si doping can be explained by this process. Aside from the inclination caused by Si doping, a TD inclination in undoped GaN layers has been analyzed. Possible explanations for the inclination process are discussed.
The authors thank Olaf Fink (FBH) for support in MOCVD growth and Eva Oehlschlegel (HUB) for support in sample preparation.
  1. 1. M. A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, and H. Hirayama, J. Mater. Chem. C 7, 143 (2019)., Google ScholarCrossref, ISI
  2. 2. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011)., Google ScholarCrossref, ISI
  3. 3. K. Ding, V. Avrutin, Ü. Özgür, and H. Morkoç, Crystals 7, 300 (2017)., Google ScholarCrossref, ISI
  4. 4. A. P. Zhang, L. B. Rowland, E. B. Kaminsky, V. Tilak, J. C. Grande, J. Teetsov, A. Vertiatchikh, and L. F. Eastman, J. Electron. Mater. 32, 388 (2003)., Google ScholarCrossref, ISI
  5. 5. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007)., Google ScholarScitation, ISI
  6. 6. K. Ban, J.-I. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express 4, 052101 (2011)., Google ScholarCrossref, ISI
  7. 7. M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 106, 073513 (2009)., Google ScholarScitation, ISI
  8. 8. M. A. Moram, T. C. Sadler, M. Häberlen, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 97, 261907 (2010)., Google ScholarScitation, ISI
  9. 9. F. Brunner, A. Mogilatenko, A. Knauer, M. Weyers, and J.-T. Zettler, J. Appl. Phys. 112, 033503 (2012)., Google ScholarScitation, ISI
  10. 10. A. Dadgar, P. Veit, F. Schulze, J. Bläsing, A. Krtschil, H. Witte, A. Diez, T. Hempel, J. Christen, R. Clos, and A. Krost, Thin Solid Films 515, 4356 (2007)., Google ScholarCrossref, ISI
  11. 11. K. Forghani, L. Schade, U. T. Schwarz, F. Lipski, O. Klein, U. Kaiser, and F. Scholz, J. Appl. Phys. 112, 093102 (2012)., Google ScholarScitation, ISI
  12. 12. M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 109, 073509 (2011)., Google ScholarScitation, ISI
  13. 13. J. Xie, S. Mita, A. Rice, J. Tweedie, L. Hussey, R. Collazo, and Z. Sitar, Appl. Phys. Lett. 98, 202101 (2011)., Google ScholarScitation, ISI
  14. 14. A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, and F. Scholz, Phys. Rev. B 61, 2812 (2000)., Google ScholarCrossref, ISI
  15. 15. L. T. Romano, C. G. Van de Walle, J. W. Ager, W. Götz, and R. S. Kern, J. Appl. Phys. 87, 7745 (2000)., Google ScholarScitation, ISI
  16. 16. S. L. Rhode, M. K. Horton, W. Y. Fu, S.-L. Sahonta, M. J. Kappers, T. J. Pennycook, C. J. Humphreys, R. O. Dusane, and M. A. Moram, Appl. Phys. Lett. 107, 243104 (2015)., Google ScholarScitation, ISI
  17. 17. S. Tanaka, M. Takeuchi, and Y. Aoyagi, Jpn. J. Appl. Phys. 39, L831 (2000)., Google ScholarCrossref, ISI
  18. 18. A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, “Strains and stresses in GaN heteroepitaxy—Sources and control,” in Advances in Solid State Physics (Springer, 2004), Vol. 44, p. 313. Google Scholar
  19. 19. T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, Phys. Rev. Lett. 110, 036103 (2013)., Google ScholarCrossref, ISI
  20. 20. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth 221, 334 (2000)., Google ScholarCrossref, ISI
  21. 21. G. G. Stoney, Proc. R. Soc. A 82, 172 (1909)., Google ScholarCrossref
  22. 22. A. E. Romanov and J. S. Speck, Appl. Phys. Lett. 83, 2569 (2003)., Google ScholarScitation, ISI
  23. 23. D. M. Follstaedt, S. R. Lee, A. A. Allerman, and J. A. Floro, J. Appl. Phys. 105, 083507 (2009)., Google ScholarScitation, ISI
  24. 24. P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 83, 674 (2003)., Google ScholarScitation, ISI
  25. 25. T. Matsubara, K. Sugimoto, S. Goubara, R. Inomoto, N. Okada, and K. Tadatomo, J. Appl. Phys. 121, 185101 (2017)., Google ScholarScitation, ISI
  26. 26. A. Dadgar, J. Bläsing, A. Diez, and A. Krost, Appl. Phys. Express 4, 011001 (2011)., Google ScholarCrossref, ISI
  27. 27. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)., Google ScholarScitation, ISI
  28. 28. P. M. Petroff and L. C. Kimerling, Appl. Phys. Lett. 29, 461 (1976)., Google ScholarScitation, ISI
  29. 29. J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger Pub. Co., 1992). Google Scholar
  30. 30. C. Nenstiel, M. Bägler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, and A. Hoffmann, Phys. Status Solidi RRL 9, 716 (2015)., Google ScholarCrossref, ISI
  31. 31. Z. Bryan, I. Bryan, B. E. Gaddy, P. Reddy, L. Hussey, M. Bobea, W. Guo, M. Hoffmann, R. Kirste, J. Tweedie, M. Gerhold, D. L. Irving, Z. Sitar, and R. Collazo, Appl. Phys. Lett. 105, 222101 (2014)., Google ScholarScitation, ISI
  32. 32. A. Munkholm, C. Thompson, M. V. R. Murty, J. A. Eastman, O. Auciello, G. B. Stephenson, P. Fini, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 77, 1626 (2000)., Google ScholarScitation, ISI
  33. 33. J. M. Redwing, I. C. Manning, X. Weng, S. M. Eichfeld, J. D. Acord, M. A. Fanton, and D. W. Snyder, in MRS Proceedings (Cambridge University Press, 2012), p. 1396. Google Scholar
  34. 34. P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 97, 103534 (2005)., Google ScholarScitation, ISI
  35. 35. S. Terao, M. Iwaya, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 40, L195 (2001)., Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.