No Access Submitted: 05 April 2019 Accepted: 08 August 2019 Published Online: 28 August 2019
Chaos 29, 083126 (2019); https://doi.org/10.1063/1.5099038
more...View Affiliations
View Contributors
  • Sergio Faci-Lázaro
  • Jordi Soriano
  • Jesús Gómez-Gardeñes
We study the structural and dynamical consequences of damage in spatial neuronal networks. Inspired by real in vitro networks, we construct directed networks embedded in a two-dimensional space and follow biological rules for designing the wiring of the system. As a result, synthetic cultures display strong metric correlations similar to those observed in real experiments. In its turn, neuronal dynamics is incorporated through the Izhikevich model adopting the parameters derived from observation in real cultures. We consider two scenarios for damage, targeted attacks on those neurons with the highest out-degree and random failures. By analyzing the evolution of both the giant connected component and the dynamical patterns of the neurons as nodes are removed, we observe that network activity halts for a removal of 50% of the nodes in targeted attacks, much lower than the 70% node removal required in the case of random failures. Notably, the decrease of neuronal activity is not gradual. Both damage scenarios portray “boosts” of activity just before full silencing that are not present in equivalent random (Erdös–Rényi) graphs. These boosts correspond to small, spatially compact subnetworks that are able to maintain high levels of activity. Since these subnetworks are absent in the equivalent random graphs, we hypothesize that metric correlations facilitate the existence of local circuits sufficiently integrated to maintain activity, shaping an intrinsic mechanism for resilience.
We acknowledge financial support from the Spanish Ministerio de Economia y Competitividad through Project Nos. FIS2015-71582-C2, FIS2016-78507-C2-2-P, FIS2017-87519-P, and FIS2017-90782-REDT (IBERSINC), from the Generalitat de Catalunya through Grant No. 2017-SGR-1061, and from the Departamento de Industria e Innovación del Gobierno de Aragón y Fondo Social Europeo (FENOL group). S.F.L. acknowledges financial support from Gobierno de Aragon through a doctoral fellowship.
  1. 1. A. Fornito, A. Zalesky, and M. Breakspear, “The connectomics of brain disorders,” Nat. Rev. Neurosci. 16, 159–72 (2015). https://doi.org/10.1038/nrn3901, Google ScholarCrossref
  2. 2. C. Gratton, E. M. Nomura, F. Perez, and M. D. Esposito, “Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain,” J. Cogn. Neurosci. 24(6), 1275–1285 (2012). https://doi.org/10.1162/jocn_a_00222, Google ScholarCrossref
  3. 3. J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, and O. Sporns, “Modeling the impact of lesions in the human brain,” PLoS Comput. Biol. 5(6), 1–12 (2009). https://doi.org/10.1371/journal.pcbi.1000408, Google ScholarCrossref
  4. 4. R. L. Buckner, J. Sepulcre, T. Talukdar, F. M. Krienen, H. Liu, T. Hedden, J. R. Andrews-Hanna, R. A. Sperling, and K. A. Johnson, “Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease,” J. Neurosci. 29(6), 1860–1873 (2009). https://doi.org/10.1523/JNEUROSCI.5062-08.2009, Google ScholarCrossref
  5. 5. E. J. Sanz-Arigita, M. M. Schoonheim, J. S. Damoiseaux, S. A. R. B. Rombouts, E. Maris, F. Barkhof, P. Scheltens, and C. J. Stam, “Loss of “small-world” networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity,” PLoS One 5(11), 1–14 (2010). https://doi.org/10.1371/journal.pone.0013788, Google ScholarCrossref
  6. 6. L.-D. Lord, A. B. Stevner, G. Deco, and M. L. Kringelbach, Understanding principles of integration and segregation using whole-brain computational connectomics: Implications for neuropsychiatric disorders,” Philos. Trans. R. Soc. A 375(2096), 20160283 (2017). https://doi.org/10.1098/rsta.2016.0283, Google ScholarCrossref
  7. 7. M. Kaiser, R. Martin, P. Andras, and M. P. Young, “Simulation of robustness against lesions of cortical networks,” Eur. J. Neurosci. 25(10), 3185–3192 (2007). https://doi.org/10.1111/j.1460-9568.2007.05574.x, Google ScholarCrossref
  8. 8. K. E. Joyce, S. Hayasaka, and P. J. Laurienti, “The human functional brain network demonstrates structural and dynamical resilience to targeted attack,” PLoS Comput. Biol. 9(1), 1–11 (2013). https://doi.org/10.1371/journal.pcbi.1002885, Google ScholarCrossref
  9. 9. J. Gómez-Gardeñes, P. Echenique, and Y. Moreno, “Immunization of real complex communication networks,” Eur. Phys. J. B 49(2), 259 (2006). https://doi.org/10.1140/epjb/e2006-00041-1, Google ScholarCrossref
  10. 10. M. Rubinov, A. R. McIntosh, M. J. Valenzuela, and M. Breakspear, “Simulation of neuronal death and network recovery in a computational model of distributed cortical activity,” Am. J. Geriatr. Psychiatry 17(3), 210–217 (2009). https://doi.org/10.1097/JGP.0b013e318187137a, Google ScholarCrossref
  11. 11. S. Feldt, P. Bonifazi, and R. Cossart, “Dissecting functional connectivity of neuronal microcircuits: Experimental and theoretical insights,” Trends. Neurosci. 34(5), 225–236 (2011). https://doi.org/10.1016/j.tins.2011.02.007, Google ScholarCrossref
  12. 12. D. Holstein, A. V. Goltsev, and J. F. F. Mendes, “Impact of noise and damage on collective dynamics of scale-free neuronal networks,” Phys. Rev. E 87, 032717 (2013). https://doi.org/10.1103/PhysRevE.87.032717, Google ScholarCrossref
  13. 13. L. J. Millet and M. U. Gillette, “Over a century of neuron culture: From the hanging drop to microfluidic devices,” Yale J. Biol. Med. 85(4), 501 (2012). Google Scholar
  14. 14. J. G. Orlandi, J. Soriano, E. Alvarez-Lacalle, S. Teller, and J. Casademunt, “Noise focusing and the emergence of coherent activity in neuronal cultures,” Nat. Phys. 9(9), 582 (2013). https://doi.org/10.1038/nphys2686, Google ScholarCrossref
  15. 15. E. Tibau, M. Valencia, and J. Soriano, “Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures,” Front. Neural Circuit. 7, 199 (2013). https://doi.org/10.3389/fncir.2013.00199, Google ScholarCrossref
  16. 16. S. Okujeni, S. Kandler, and U. Egert, “Mesoscale architecture shapes initiation and richness of spontaneous network activity,” J. Neurosci. 37(14), 3972–3987 (2017). https://doi.org/10.1523/JNEUROSCI.2552-16.2017, Google ScholarCrossref
  17. 17. L. Hernández-Navarro, J. G. Orlandi, B. Cerruti, E. Vives, and J. Soriano, “Dominance of metric correlations in two-dimensional neuronal cultures described through a random field Ising model,” Phys. Rev. Lett. 118, 208101 (2017). https://doi.org/10.1103/PhysRevLett.118.208101, Google ScholarCrossref
  18. 18. E. Tibau, A. Ludl, S. Rudiger, J. G. Orlandi, and J. Soriano, “Neuronal spatial arrangement shapes effective connectivity traits of in vitro cortical networks,” IEEE Trans. Network Sci. Eng. (2018). https://doi.org/10.1109/TNSE.2018.2862919, Google ScholarCrossref
  19. 19. M. E. J. Newman, Networks: An Introduction (Oxford University Press, 2010). Google ScholarCrossref
  20. 20. C. Schmeltzer, J. Soriano, I. M. Sokolov, and S. Rüdiger, “Percolation of spatially constrained Erdös–Rényi networks with degree correlations,” Phys. Rev. E 89, 012116 (2014). https://doi.org/10.1103/PhysRevE.89.012116, Google ScholarCrossref
  21. 21. E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural Networks 14(6), 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440, Google ScholarCrossref
  22. 22. E. Alvarez-Lacalle and E. Moses, “Slow and fast pulses in 1-D cultures of excitatory neurons,” J. Comput. Neurosci. 26(3), 475–493 (2009). https://doi.org/10.1007/s10827-008-0123-5, Google ScholarCrossref
  23. 23. M. Tsodyks and H. Markram, “The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability,” Proc. Natl Acad. Sci. 94(2), 719–723 (1997). https://doi.org/10.1073/pnas.94.2.719, Google ScholarCrossref
  24. 24. M. Tsodyks, A. Uziel, H. Markram et al., “Synchrony generation in recurrent networks with frequency-dependent synapses,” J. Neurosci. 20(1), 825–835 (2000). https://doi.org/10.1523/JNEUROSCI.20-01-j0003.2000, Google ScholarCrossref
  25. 25. D. Golomb and Y. Amitai, “Propagating neuronal discharges in neocortical slices: Computational and experimental study,” J. Neurophysiol. 78(3), 1199–1211 (1997). https://doi.org/10.1152/jn.1997.78.3.1199, Google ScholarCrossref
  26. 26. J. M. Beggs and D. Plenz, “Neuronal avalanches in neocortical circuits,” J. Neurosci. 23(35), 11167–11177 (2003). https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003, Google ScholarCrossref, ISI
  27. 27. J. M. Beggs and D. Plenz, “Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures,” J. Neurosci. 24(22), 5216–5229 (2004). https://doi.org/10.1523/JNEUROSCI.0540-04.2004, Google ScholarCrossref, ISI
  28. 28. E. Estrada and N. Hatano, “Communicability in complex networks,” Phys. Rev. E 77(3), 036111 (2008). https://doi.org/10.1103/PhysRevE.77.036111, Google ScholarCrossref
  29. 29. O. Stetter, D. Battaglia, J. Soriano, and T. Geisel, “Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals,” PLoS Comput. Biol. 8(8), 1–25 (2012). https://doi.org/10.1371/journal.pcbi.1002653, Google ScholarCrossref
  30. 30. Y. Sun, B. Danila, K. Josić, and K. E. Bassler, “Improved community structure detection using a modified fine-tuning strategy,” Europhys. Lett. 86(2), 28004 (2009). https://doi.org/10.1209/0295-5075/86/28004, Google ScholarCrossref
  31. 31. M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” NeuroImage 52(3), 1059–1069 (2010). https://doi.org/10.1016/j.neuroimage.2009.10.003, Google ScholarCrossref
  32. 32. A. G. Blankenship and M. B. Feller, “Mechanisms underlying spontaneous patterned activity in developing neural circuits,” Nat. Rev. Neurosci. 11(1), 18 (2010). https://doi.org/10.1038/nrn2759, Google ScholarCrossref
  33. 33. D. de Santos-Sierra, I. Sendiña-Nadal, I. Leyva, J. A. Almendral, S. Anava, A. Ayali, D. Papo, and S. Boccaletti, “Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures,” PLoS One 9(1), 1–8 (2014). https://doi.org/10.1371/journal.pone.0085828, Google ScholarCrossref
  34. 34. S. Teller, C. Granell, M. De Domenico, J. Soriano, S. Gómez, and A. Arenas, “Emergence of assortative mixing between clusters of cultured neurons,” PLoS Comput. Biol. 10(9), 1–17 (2014). https://doi.org/10.1371/journal.pcbi.1003796, Google ScholarCrossref
  35. 35. H. Yamamoto, S. Moriya, K. Ide, T. Hayakawa, H. Akima, S. Sato, S. Kubota, T. Tanii, M. Niwano, S. Teller, J. Soriano, and A. Hirano-Iwata, “Impact of modular organization on dynamical richness in cortical networks,” Sci. Adv. 4(11), eaau4914 (2018). https://doi.org/10.1126/sciadv.aau4914, Google ScholarCrossref
  36. 36. J. Gómez-Gardeñes, G. Zamora-López, Y. Moreno, and A. Arenas, “From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex,” PLoS One 5(8), e12313 (2010). https://doi.org/10.1371/journal.pone.0012313, Google ScholarCrossref
  37. 37. G. Zamora-López, C. Zhou, and J. Kurths, “Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks,” Front. Neuroinform. 4, 1 (2010). https://doi.org/10.3389/neuro.11.001.2010, Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.