ABSTRACT
In this article, we demonstrate that a grating fabricated through nanoscale volumetric cross-linking of a liquid crystalline polymer enables remote polarization control over the diffracted channels. This functionality is a consequence of the responsivity of liquid crystal networks upon light stimuli. Tuning of the photonic response of the device is achieved thanks to both a refractive index and a shape change of the grating elements induced by a molecular rearrangement under irradiation. In particular, the material anisotropy allows for nontrivial polarization state management over multiple beams. The absence of any liquid component and a time response down to 0.2 ms make our device appealing in the fields of polarimetry and optical communications.
The authors acknowledge funding from the European Commission (EU-H2020 GA 654148 “Laserlab-Europe”) and Ente Cassa di Risparmio di Firenze (Grant No. 2015/0781).
REFERENCES
- 1. D. Goldstein, Polarized Light ( Marcel Dekker, 2003). Google ScholarCrossref
- 2. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, Proc. Natl. Acad. Sci. U.S.A. 109, 15712 (2012). https://doi.org/10.1073/pnas.1210105109, Google ScholarCrossref, ISI
- 3. K. v. Frisch, Experientia 5, 142 (1949). https://doi.org/10.1007/BF02174424, Google ScholarCrossref
- 4. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, Proc. SPIE 9099, 90990B (2014). https://doi.org/10.1117/12.2053245, Google ScholarCrossref
- 5. B. Kress and T. Starner, Proc. SPIE 8720, 87200A (2013). https://doi.org/10.1117/12.2015654, Google ScholarCrossref
- 6. J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sanchez Martinez, Astrophysical Spectropolarimetry ( Cambridge University Press, 2002). Google Scholar
- 7. W. Shieh, H. Khodakarami, and D. Che, APL Photonics 1, 040801 (2016). https://doi.org/10.1063/1.4949568, Google ScholarScitation, ISI
- 8. J. N. Damask, Polarization Optics in Telecommunications ( Springer, 2005). Google ScholarCrossref
- 9. H.-T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016). https://doi.org/10.1088/0034-4885/79/7/076401, Google ScholarCrossref, ISI
- 10. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, APL Photonics 1, 030801 (2016). https://doi.org/10.1063/1.4949007, Google ScholarScitation, ISI
- 11. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, Light: Sci. Appl. 6, e17027 (2017). https://doi.org/10.1038/lsa.2017.27, Google ScholarCrossref
- 12. A. Pors and S. I. Bozhevolnyi, Phys. Rev. Appl. 5, 064015 (2016). https://doi.org/10.1103/PhysRevApplied.5.064015, Google ScholarCrossref, ISI
- 13. U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, Appl. Phys. Lett. 102, 161104 (2013). https://doi.org/10.1063/1.4801317, Google ScholarScitation, ISI
- 14. N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. P. B. Mueller, R. C. Devlin, K. Leosson, and F. Capasso, Opt. Express 26, 21455 (2018). https://doi.org/10.1364/OE.26.021455, Google ScholarCrossref, ISI
- 15. R. M. A. Azzam, J. Opt. Soc. Am. A 33, 1396 (2016). https://doi.org/10.1364/JOSAA.33.001396, Google ScholarCrossref
- 16. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, Opt. Express 24, 24265 (2016). https://doi.org/10.1364/OE.24.024265, Google ScholarCrossref, ISI
- 17. S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, APL Photonics 2, 016103 (2017). https://doi.org/10.1063/1.4968840, Google ScholarScitation, ISI
- 18. L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Adv. Opt. Mater. 5, 1600716 (2017). https://doi.org/10.1002/adom.201600716, Google ScholarCrossref, ISI
- 19. Z.-Y. Jia, F.-Z. Shu, Y.-J. Gao, F. Cheng, R.-W. Peng, R.-H. Fan, Y. Liu, and M. Wang, Phys. Rev. Appl. 9, 034009 (2018). https://doi.org/10.1103/PhysRevApplied.9.034009, Google ScholarCrossref, ISI
- 20. S. Dutta-Gupta, N. Dabidian, I. Kholmanov, M. A. Belkin, and G. Shvets, Philos. Trans. R. Soc., A 375, 20160061 (2017). https://doi.org/10.1098/rsta.2016.0061, Google ScholarCrossref, ISI
- 21. L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, Nat. Photonics 11, 628 (2017). https://doi.org/10.1038/s41566-017-0002-6, Google ScholarCrossref, ISI
- 22. Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and I. Brener, Nat. Photonics 11, 390 (2017). https://doi.org/10.1038/nphoton.2017.64, Google ScholarCrossref, ISI
- 23. N. I. Zheludev and E. Plum, Nat. Nanotechnol. 11, 16 (2016). https://doi.org/10.1038/nnano.2015.302, Google ScholarCrossref, ISI
- 24. S. J. Boehm, L. Kang, D. H. Werner, and C. D. Keating, Adv. Funct. Mater. 27, 1604703 (2017). https://doi.org/10.1002/adfm.201604703, Google ScholarCrossref, ISI
- 25. A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, Appl. Phys. Lett. 110, 071109 (2017). https://doi.org/10.1063/1.4976504, Google ScholarScitation, ISI
- 26. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers ( Oxford University Press, 2003). Google Scholar
- 27. D. J. Broer, G. P. Crawford, and S. Zumer, Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers ( CRC Press, 2011). Google ScholarCrossref
- 28. D. Liu and D. J. Broer, Langmuir 30, 13499 (2014). https://doi.org/10.1021/la500454d, Google ScholarCrossref, ISI
- 29. C. Ohm, M. Brehmer, and R. Zentel, Adv. Mater. 22, 3366 (2010). https://doi.org/10.1002/adma.200904059, Google ScholarCrossref, ISI
- 30. N. Akamatsu, K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, and A. Shishido, Soft Matter 13, 7486 (2017). https://doi.org/10.1039/C7SM01287J, Google ScholarCrossref, ISI
- 31. S. Nocentini, D. Martella, C. Parmeggiani, S. Zanotto, and D. S. Wiersma, Adv. Opt. Mater. 6, 1800167 (2018). https://doi.org/10.1002/adom.201800167, Google ScholarCrossref, ISI
- 32. X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, Opt. Express 25, 19298 (2017). https://doi.org/10.1364/OE.25.019298, Google ScholarCrossref, ISI
- 33. S. Nocentini, F. Riboli, M. Burresi, D. Martella, C. Parmeggiani, and D. S. Wiersma, ACS Photonics 5, 3222 (2018). https://doi.org/10.1021/acsphotonics.8b00461, Google ScholarCrossref, ISI
- 34. D. Bošnjaković, M. Gregorc, H. Li, M. Čopič, V. Domenici, and I. Drevenšek-Olenik, Appl. Sci. 8, 1330 (2018). https://doi.org/10.3390/app8081330, Google ScholarCrossref, ISI
- 35. R. K. Komanduri and M. J. Escuti, Appl. Phys. Lett. 95, 091106 (2009). https://doi.org/10.1063/1.3197011, Google ScholarScitation, ISI
- 36. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, J. Appl. Phys. 121, 013102 (2017). https://doi.org/10.1063/1.4972981, Google ScholarScitation, ISI
- 37. F. Dong, H. Feng, L. Xu, B. Wang, Z. Song, X. Zhang, L. Yan, X. Li, Y. Tian, W. Wang, L. Sun, Y. Li, and W. Chu, ACS Photonics 6, 230 (2019). https://doi.org/10.1021/acsphotonics.8b01513, Google ScholarCrossref, ISI
- 38. S. Nocentini, D. Martella, C. Parmeggiani, and D. Wiersma, Materials 9, 525 (2016). https://doi.org/10.3390/ma9070525, Google ScholarCrossref, ISI
- 39. A. Cerjan and S. Fan, Phys. Rev. Lett. 118, 253902 (2017). https://doi.org/10.1103/PhysRevLett.118.253902, Google ScholarCrossref, ISI
- 40. G. Liang, A. Abouraddy, D. Christodoulides, and E. L. Thomas, Opt. Express 24, 30164 (2016). https://doi.org/10.1364/OE.24.030164, Google ScholarCrossref, ISI
- 41. T. Ikeda, J. Mamiya, and Y. Yu, Angew. Chem., Int. Ed. 46, 506 (2007). https://doi.org/10.1002/anie.200602372, Google ScholarCrossref, ISI
- 42. H. K. Bisoyi and Q. Li, Chem. Rev. 116, 15089 (2016). https://doi.org/10.1021/acs.chemrev.6b00415, Google ScholarCrossref, ISI
- 43. D. Martella, S. Nocentini, F. Micheletti, D. S. Wiersma, and C. Parmeggiani, Soft Matter 15, 1312 (2019). https://doi.org/10.1039/C8SM01954A, Google ScholarCrossref, ISI
- 44. D. Martella, S. Nocentini, D. Nuzhdin, C. Parmeggiani, and D. S. Wiersma, Adv. Mater. 29, 1704047 (2017). https://doi.org/10.1002/adma.201704047, Google ScholarCrossref, ISI
- 45. D. Whittaker and I. Culshaw, Phys. Rev. B 60, 2610 (1999). https://doi.org/10.1103/PhysRevB.60.2610, Google ScholarCrossref, ISI
- 46. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, Phys. Rev. B 77, 035324 (2008). https://doi.org/10.1103/PhysRevB.77.035324, Google ScholarCrossref, ISI
- 47. See https://it.mathworks.com/matlabcentral/fileexchange/55401-ppml-periodically-patterned-multi-layer for the RCWA code. Google Scholar
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.