No Access Submitted: 19 March 2019 Accepted: 04 May 2019 Published Online: 22 May 2019
Appl. Phys. Lett. 114, 201103 (2019); https://doi.org/10.1063/1.5096648
more...View Affiliations
View Contributors
  • Simone Zanotto
  • Fabrizio Sgrignuoli
  • Sara Nocentini
  • Daniele Martella
  • Camilla Parmeggiani
  • Diederik S. Wiersma
In this article, we demonstrate that a grating fabricated through nanoscale volumetric cross-linking of a liquid crystalline polymer enables remote polarization control over the diffracted channels. This functionality is a consequence of the responsivity of liquid crystal networks upon light stimuli. Tuning of the photonic response of the device is achieved thanks to both a refractive index and a shape change of the grating elements induced by a molecular rearrangement under irradiation. In particular, the material anisotropy allows for nontrivial polarization state management over multiple beams. The absence of any liquid component and a time response down to 0.2 ms make our device appealing in the fields of polarimetry and optical communications.
The authors acknowledge funding from the European Commission (EU-H2020 GA 654148 “Laserlab-Europe”) and Ente Cassa di Risparmio di Firenze (Grant No. 2015/0781).
  1. 1. D. Goldstein, Polarized Light ( Marcel Dekker, 2003). Google ScholarCrossref
  2. 2. S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, and U. Steiner, Proc. Natl. Acad. Sci. U.S.A. 109, 15712 (2012). https://doi.org/10.1073/pnas.1210105109, Google ScholarCrossref, ISI
  3. 3. K. v. Frisch, Experientia 5, 142 (1949). https://doi.org/10.1007/BF02174424, Google ScholarCrossref
  4. 4. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, Proc. SPIE 9099, 90990B (2014). https://doi.org/10.1117/12.2053245, Google ScholarCrossref
  5. 5. B. Kress and T. Starner, Proc. SPIE 8720, 87200A (2013). https://doi.org/10.1117/12.2015654, Google ScholarCrossref
  6. 6. J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sanchez Martinez, Astrophysical Spectropolarimetry ( Cambridge University Press, 2002). Google Scholar
  7. 7. W. Shieh, H. Khodakarami, and D. Che, APL Photonics 1, 040801 (2016). https://doi.org/10.1063/1.4949568, Google ScholarScitation, ISI
  8. 8. J. N. Damask, Polarization Optics in Telecommunications ( Springer, 2005). Google ScholarCrossref
  9. 9. H.-T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016). https://doi.org/10.1088/0034-4885/79/7/076401, Google ScholarCrossref, ISI
  10. 10. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, APL Photonics 1, 030801 (2016). https://doi.org/10.1063/1.4949007, Google ScholarScitation, ISI
  11. 11. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, Light: Sci. Appl. 6, e17027 (2017). https://doi.org/10.1038/lsa.2017.27, Google ScholarCrossref
  12. 12. A. Pors and S. I. Bozhevolnyi, Phys. Rev. Appl. 5, 064015 (2016). https://doi.org/10.1103/PhysRevApplied.5.064015, Google ScholarCrossref, ISI
  13. 13. U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, Appl. Phys. Lett. 102, 161104 (2013). https://doi.org/10.1063/1.4801317, Google ScholarScitation, ISI
  14. 14. N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. P. B. Mueller, R. C. Devlin, K. Leosson, and F. Capasso, Opt. Express 26, 21455 (2018). https://doi.org/10.1364/OE.26.021455, Google ScholarCrossref, ISI
  15. 15. R. M. A. Azzam, J. Opt. Soc. Am. A 33, 1396 (2016). https://doi.org/10.1364/JOSAA.33.001396, Google ScholarCrossref
  16. 16. J. Chou, L. Parameswaran, B. Kimball, and M. Rothschild, Opt. Express 24, 24265 (2016). https://doi.org/10.1364/OE.24.024265, Google ScholarCrossref, ISI
  17. 17. S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, APL Photonics 2, 016103 (2017). https://doi.org/10.1063/1.4968840, Google ScholarScitation, ISI
  18. 18. L. Cong, P. Pitchappa, Y. Wu, L. Ke, C. Lee, N. Singh, H. Yang, and R. Singh, Adv. Opt. Mater. 5, 1600716 (2017). https://doi.org/10.1002/adom.201600716, Google ScholarCrossref, ISI
  19. 19. Z.-Y. Jia, F.-Z. Shu, Y.-J. Gao, F. Cheng, R.-W. Peng, R.-H. Fan, Y. Liu, and M. Wang, Phys. Rev. Appl. 9, 034009 (2018). https://doi.org/10.1103/PhysRevApplied.9.034009, Google ScholarCrossref, ISI
  20. 20. S. Dutta-Gupta, N. Dabidian, I. Kholmanov, M. A. Belkin, and G. Shvets, Philos. Trans. R. Soc., A 375, 20160061 (2017). https://doi.org/10.1098/rsta.2016.0061, Google ScholarCrossref, ISI
  21. 21. L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, Nat. Photonics 11, 628 (2017). https://doi.org/10.1038/s41566-017-0002-6, Google ScholarCrossref, ISI
  22. 22. Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J.-P. Maria, M. B. Sinclair, and I. Brener, Nat. Photonics 11, 390 (2017). https://doi.org/10.1038/nphoton.2017.64, Google ScholarCrossref, ISI
  23. 23. N. I. Zheludev and E. Plum, Nat. Nanotechnol. 11, 16 (2016). https://doi.org/10.1038/nnano.2015.302, Google ScholarCrossref, ISI
  24. 24. S. J. Boehm, L. Kang, D. H. Werner, and C. D. Keating, Adv. Funct. Mater. 27, 1604703 (2017). https://doi.org/10.1002/adfm.201604703, Google ScholarCrossref, ISI
  25. 25. A. Komar, Z. Fang, J. Bohn, J. Sautter, M. Decker, A. Miroshnichenko, T. Pertsch, I. Brener, Y. S. Kivshar, I. Staude, and D. N. Neshev, Appl. Phys. Lett. 110, 071109 (2017). https://doi.org/10.1063/1.4976504, Google ScholarScitation, ISI
  26. 26. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers ( Oxford University Press, 2003). Google Scholar
  27. 27. D. J. Broer, G. P. Crawford, and S. Zumer, Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers ( CRC Press, 2011). Google ScholarCrossref
  28. 28. D. Liu and D. J. Broer, Langmuir 30, 13499 (2014). https://doi.org/10.1021/la500454d, Google ScholarCrossref, ISI
  29. 29. C. Ohm, M. Brehmer, and R. Zentel, Adv. Mater. 22, 3366 (2010). https://doi.org/10.1002/adma.200904059, Google ScholarCrossref, ISI
  30. 30. N. Akamatsu, K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, and A. Shishido, Soft Matter 13, 7486 (2017). https://doi.org/10.1039/C7SM01287J, Google ScholarCrossref, ISI
  31. 31. S. Nocentini, D. Martella, C. Parmeggiani, S. Zanotto, and D. S. Wiersma, Adv. Opt. Mater. 6, 1800167 (2018). https://doi.org/10.1002/adom.201800167, Google ScholarCrossref, ISI
  32. 32. X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, Opt. Express 25, 19298 (2017). https://doi.org/10.1364/OE.25.019298, Google ScholarCrossref, ISI
  33. 33. S. Nocentini, F. Riboli, M. Burresi, D. Martella, C. Parmeggiani, and D. S. Wiersma, ACS Photonics 5, 3222 (2018). https://doi.org/10.1021/acsphotonics.8b00461, Google ScholarCrossref, ISI
  34. 34. D. Bošnjaković, M. Gregorc, H. Li, M. Čopič, V. Domenici, and I. Drevenšek-Olenik, Appl. Sci. 8, 1330 (2018). https://doi.org/10.3390/app8081330, Google ScholarCrossref, ISI
  35. 35. R. K. Komanduri and M. J. Escuti, Appl. Phys. Lett. 95, 091106 (2009). https://doi.org/10.1063/1.3197011, Google ScholarScitation, ISI
  36. 36. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, J. Appl. Phys. 121, 013102 (2017). https://doi.org/10.1063/1.4972981, Google ScholarScitation, ISI
  37. 37. F. Dong, H. Feng, L. Xu, B. Wang, Z. Song, X. Zhang, L. Yan, X. Li, Y. Tian, W. Wang, L. Sun, Y. Li, and W. Chu, ACS Photonics 6, 230 (2019). https://doi.org/10.1021/acsphotonics.8b01513, Google ScholarCrossref, ISI
  38. 38. S. Nocentini, D. Martella, C. Parmeggiani, and D. Wiersma, Materials 9, 525 (2016). https://doi.org/10.3390/ma9070525, Google ScholarCrossref, ISI
  39. 39. A. Cerjan and S. Fan, Phys. Rev. Lett. 118, 253902 (2017). https://doi.org/10.1103/PhysRevLett.118.253902, Google ScholarCrossref, ISI
  40. 40. G. Liang, A. Abouraddy, D. Christodoulides, and E. L. Thomas, Opt. Express 24, 30164 (2016). https://doi.org/10.1364/OE.24.030164, Google ScholarCrossref, ISI
  41. 41. T. Ikeda, J. Mamiya, and Y. Yu, Angew. Chem., Int. Ed. 46, 506 (2007). https://doi.org/10.1002/anie.200602372, Google ScholarCrossref, ISI
  42. 42. H. K. Bisoyi and Q. Li, Chem. Rev. 116, 15089 (2016). https://doi.org/10.1021/acs.chemrev.6b00415, Google ScholarCrossref, ISI
  43. 43. D. Martella, S. Nocentini, F. Micheletti, D. S. Wiersma, and C. Parmeggiani, Soft Matter 15, 1312 (2019). https://doi.org/10.1039/C8SM01954A, Google ScholarCrossref, ISI
  44. 44. D. Martella, S. Nocentini, D. Nuzhdin, C. Parmeggiani, and D. S. Wiersma, Adv. Mater. 29, 1704047 (2017). https://doi.org/10.1002/adma.201704047, Google ScholarCrossref, ISI
  45. 45. D. Whittaker and I. Culshaw, Phys. Rev. B 60, 2610 (1999). https://doi.org/10.1103/PhysRevB.60.2610, Google ScholarCrossref, ISI
  46. 46. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, Phys. Rev. B 77, 035324 (2008). https://doi.org/10.1103/PhysRevB.77.035324, Google ScholarCrossref, ISI
  47. 47. See https://it.mathworks.com/matlabcentral/fileexchange/55401-ppml-periodically-patterned-multi-layer for the RCWA code. Google Scholar
  1. © 2019 Author(s). Published under license by AIP Publishing.