No Access Submitted: 05 February 2019 Accepted: 05 May 2019 Published Online: 03 June 2019
Journal of Applied Physics 125, 215901 (2019); https://doi.org/10.1063/1.5091795
more...View Affiliations
View Contributors
  • Amnaya P. Awasthi
  • Ghatu Subhash
Icosahedral boron-rich solids fall second in hardness to diamondlike structures and have been the subject of intense investigations over the past two decades, as they possess low density, high thermal, and mechanical stability at high temperatures, and superior industrial manufacturability. A common deleterious feature called “presssure-induced amorphization,” limits their performance in high-velocity projectile applications. This article discusses spectral characteristics of amorphized states of boron carbide, a common icosahedral boron-rich ceramic, with the goal of understanding the mechanistic layout of pressure-induced amorphization. Mystery has surrounded the appearance of new peaks in Raman spectrum of pressure-induced amorphized boron carbide, but to date, no convincing explanation exists on their origin. Shock studies of boron carbide have proposed phase transformation at high pressures, but to date, no conclusive evidence has been corroborative to prove the existence of new high-pressure phases. We propose a new rationale toward deciphering the amorphization phenomenon in boron carbide centered on a thermodynamic approach to explain atomic interactions in amorphous islands. Quantum mechanical simulations are utilized to understand the impact of stresses on Raman spectra, while results from molecular dynamics (MD) simulations of volumetric compression are used to understand thermodynamic aspects of amorphization. Atomic-level nonbonded interactions from the MD potential are utilized to demonstrate origins of the residual pressure. Combining these efforts, the present study deciphers the connection between deformation behavior of boron carbide at high pressure and its mysterious amorphous Raman spectrum. The approach highlights the importance of meticulously incorporating multiscale modeling considerations in determining accurate material behavior of ultrahard materials.
The support provided by Army Research Office under Grant Nos. ARO-W911NF-14-1-0230 and ARO-W911NF-18-1-0040 were highly acknowledged. The authors thank support from the Department of Defense pertaining to the acquisition of an EMCCD Raman spectrometer via Grant No. ARO-W911NF-16-1-0180. DFT- and MD-simulations discussed in the present work have used computational resources from the Extreme Science and Engineering Discovery Environment (XSEDE) program, which is supported by the National Science Foundation Grant No. ACI-1548562. Resources from research allocation No. TG-MSS160016 were used. The authors also thank Matthew DeVries for preparing the rectangular atomistic domain for MD simulation of boron carbide.
  1. 1. V. Kanyanta, “Hard, superhard and ultrahard materials: An overview,” in Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials (Springer, 2016), pp. 1–23. Google Scholar
  2. 2. V. Blank, M. Popov, G. Pivovarov, N. Lvova, K. Gogolinsky, and V. Reshetov, “Ultrahard and superhard phases of fullerite C60: Comparison with diamond on hardness and wear,” Diam. Rel. Mater. 7, 427–431 (1998). https://doi.org/10.1016/S0925-9635(97)00232-X, Google ScholarCrossref
  3. 3. F. Thévenot, “Boron carbide—A comprehensive review,” J. Eur. Ceram. Soc. 6, 205–225 (1990). https://doi.org/10.1016/0955-2219(90)90048-K, Google ScholarCrossref
  4. 4. D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, “Boron suboxide: As hard as cubic boron nitride,” Appl. Phys. Lett. 81, 643–645 (2002). https://doi.org/10.1063/1.1494860, Google ScholarScitation, ISI
  5. 5. Non-Tetrahedrally Bonded Elements and Binary Compounds I, edited by O. Madelung, U. Róssler, and M. Schulz (Springer, Berlin, 1998), pp. 1–3. Google Scholar
  6. 6. V. I. Ivashchenko, P. E. A. Turchi, S. Veprek, V. I. Shevchenko, J. Leszczynski, L. Gorb, and F. Hill, “First-principles study of crystalline and amorphous AlMgB14-based materials,” J. Appl. Phys. 119, 205105 (2016), https://doi.org/10.1063/1.4952391, Google ScholarScitation, ISI
  7. 7. N. Orlovskaya and M. Lugovy, Boron Rich Solids, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer, 2011). Google Scholar
  8. 8. “Transformation of a ballistic mystery: Ceramics,” Mater. Today 6, 9 (2003). https://doi.org/10.1016/S1369-7021(03)00509-1, Google Scholar
  9. 9. G. Subhash, A. P. Awasthi, C. Kunka, P. Jannotti, and M. DeVries, “In search of amorphization-resistant boron carbide,” Scr. Mater. 123, 158–162 (2016). https://doi.org/10.1016/j.scriptamat.2016.06.012, Google ScholarCrossref
  10. 10. G. Fanchini, J. W. McCauley, and M. Chhowalla, “Behavior of disordered boron carbide under stress,” Phys. Rev. Lett. 97, 035502 (2006). https://doi.org/10.1103/PhysRevLett.97.035502, Google ScholarCrossref
  11. 11. C. Kunka, A. Awasthi, and G. Subhash, “Crystallographic and spectral equivalence of boron-carbide polymorphs,” Scr. Mater. 122, 82–85 (2016). https://doi.org/10.1016/j.scriptamat.2016.05.010, Google ScholarCrossref
  12. 12. H. Werheit, “Are there bipolarons in icosahedral boron-rich solids?,” J. Phys. Condens. Matter 19, 186207 (2007). https://doi.org/10.1088/0953-8984/19/18/186207, Google ScholarCrossref
  13. 13. C. Kunka, A. Awasthi, and G. Subhash, “Evaluating boron-carbide constituents with simulated Raman spectra,” Scr. Mater. 138, 32–34 (2017). https://doi.org/10.1016/j.scriptamat.2017.05.030, Google ScholarCrossref
  14. 14. D. E. Taylor, J. W. McCauley, and T. W. Wright, “The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading,” J. Phys. Condens. Matter 24, 505402 (2012). https://doi.org/10.1088/0953-8984/24/50/505402, Google ScholarCrossref
  15. 15. M. Chen, J. W. McCauley, and K. J. Hemker, “Shock-induced localized amorphization in boron carbide,” Science 299, 1563–1566 (2003). https://doi.org/10.1126/science.1080819, Google ScholarCrossref
  16. 16. V. Domnich, Y. Gogotsi, M. Trenary, and T. Tanaka, “Nanoindentation and Raman spectroscopy studies of boron carbide single crystals,” Appl. Phys. Lett. 81, 3783–3785 (2002). https://doi.org/10.1063/1.1521580, Google ScholarScitation, ISI
  17. 17. M. K. Reddy, A. Hirata, P. Liu, T. Fujita, T. Goto, and M. Chen, “Shear amorphization of boron suboxide,” Scr. Mater. 76, 9–12 (2014). https://doi.org/10.1016/j.scriptamat.2013.12.001, Google ScholarCrossref
  18. 18. X. Q. Yan, Z. Tang, L. Zhang, J. J. Guo, C. Q. Jin, Y. Zhang, T. Goto, J. W. McCauley, and M. W. Chen, “Depressurization amorphization of single-crystal boron carbide,” Phys. Rev. Lett. 102, 075505 (2009). https://doi.org/10.1103/PhysRevLett.102.075505, Google ScholarCrossref
  19. 19. D. Ghosh, G. Subhash, T. S. Sudarshan, R. Radhakrishnan, and X.-L. Gao, “Dynamic indentation response of fine-grained boron carbide,” J. Am. Ceram. Soc. 90, 1850–1857 (2007). https://doi.org/10.1111/jace.2007.90.issue-6, Google ScholarCrossref
  20. 20. D. Ghosh, G. Subhash, J. Q. Zheng, and V. Halls, “Influence of stress state and strain rate on structural amorphization in boron carbide,” J. Appl. Phys. 111, 063523 (2012). https://doi.org/10.1063/1.3696971, Google ScholarScitation, ISI
  21. 21. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: Structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605 (2011). https://doi.org/10.1111/jace.2011.94.issue-11, Google ScholarCrossref
  22. 22. G. Parsard, G. Subhash, and P. Jannotti, “Amorphization-induced volume change and residual stresses in boron carbide,” J. Am. Ceram. Soc. 101, 2606 (2018). https://doi.org/10.1111/jace.15417, Google ScholarCrossref
  23. 23. S. Aryal, P. Rulis, and W. Ching, “Mechanism for amorphization of boron carbide B4C under uniaxial compression,” Phys. Rev. B 84, 184112 (2011). https://doi.org/10.1103/PhysRevB.84.184112, Google ScholarCrossref
  24. 24. D. E. Grady, “Shock-wave strength properties of boron carbide and silicon carbide,” Le J. Phys. IV 4, C8-385 (1994). https://doi.org/10.1051/jp4:1994859, Google ScholarCrossref
  25. 25. X. Yan, W. Li, T. Goto, and M. Chen, “Raman spectroscopy of pressure-induced amorphous boron carbide,” Appl. Phys. Lett. 88, 131905 (2006). https://doi.org/10.1063/1.2189826, Google ScholarScitation, ISI
  26. 26. D. Ghosh, G. Subhash, C. H. Lee, and Y. K. Yap, “Strain-induced formation of carbon and boron clusters in boron carbide during dynamic indentation,” Appl. Phys. Lett. 91, 061910 (2007). https://doi.org/10.1063/1.2768316, Google ScholarScitation, ISI
  27. 27. G. Subhash, D. Ghosh, J. Blaber, J. Q. Zheng, V. Halls, and K. Masters, “Characterization of the 3-D amorphized zone beneath a Vickers indentation in boron carbide using Raman spectroscopy,” Acta Mater. 61, 3888–3896 (2013). https://doi.org/10.1016/j.actamat.2013.03.028, Google ScholarCrossref
  28. 28. G. Parsard and G. Subhash, “Raman spectroscopy mapping of amorphized zones beneath static and dynamic Vickers indentations on boron carbide,” J. Eur. Ceram. Soc. 37, 1945–1953 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.045, Google ScholarCrossref
  29. 29. M. K. Reddy, P. Liu, A. Hirata, T. Fujita, and M. W. Chen, “Atomic structure of amorphous shear bands in boron carbide,” Nat. Commun. 4, 2483 (2013). https://doi.org/10.1038/ncomms3483, Google ScholarCrossref
  30. 30. S. Zhao, B. Kad, B. A. Remington, J. C. LaSalvia, C. E. Wehrenberg, K. D. Behler, and M. A. Meyers, “Directional amorphization of boron carbide subjected to laser shock compression,” Proc. Natl. Acad. Sci. U.S.A. 113, 12088–12093 (2016). https://doi.org/10.1073/pnas.1604613113, Google ScholarCrossref
  31. 31. T. Fujii, Y. Mori, H. Hyodo, and K. Kimura, “X-ray diffraction study of B4C under high pressure,” J. Phys. Conf. Ser. 215, 012011 (2010). https://doi.org/10.1088/1742-6596/215/1/012011, Google ScholarCrossref
  32. 32. P. Dera, M. H. Manghnani, A. Hushur, Y. Hu, and S. Tkachev, “New insights into the enigma of boron carbide inverse molecular behavior,” J. Solid State Chem. 215, 85–93 (2014). https://doi.org/10.1016/j.jssc.2014.03.018, Google ScholarCrossref
  33. 33. A. Hushur, M. H. Manghnani, H. Werheit, P. Dera, and Q. Williams, “High-pressure phase transition makes B4.3C boron carbide a wide-gap semiconductor,” J. Phys. Condens. Matter 28, 045403 (2016). https://doi.org/10.1088/0953-8984/28/4/045403, Google ScholarCrossref
  34. 34. H. Werheit, M. H. Manghnani, U. Kuhlmann, A. Hushur, and S. Shalamberidze, “Mode Grüneisen parameters of boron carbide,” Solid State Sci. 72, 80–93 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.08.013, Google ScholarCrossref
  35. 35. D. E. Taylor, “Shock compression of boron carbide: A quantum mechanical analysis,” J. Am. Ceram. Soc. 98, 3308–3318 (2015). https://doi.org/10.1111/jace.13711, Google ScholarCrossref
  36. 36. P. Korotaev, P. Pokatashkin, and A. Yanilkin, “Structural phase transitions in boron carbide under stress,” Model. Simul. Mater. Sci. Eng. 24, 015004 (2016). https://doi.org/10.1088/0965-0393/24/1/015004, Google ScholarCrossref
  37. 37. P. Korotaev, P. Pokatashkin, and A. Yanilkin, “The role of non-hydrostatic stresses in phase transitions in boron carbide,” Comput. Mater. Sci. 121, 106–112 (2016). https://doi.org/10.1016/j.commatsci.2016.04.041, Google ScholarCrossref
  38. 38. E. Betranhandy, N. Vast, and J. Sjakste, “Ab initio study of defective chains in icosahedral boron carbide B4C,” Solid State Sci. 14, 1683–1687 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.07.002, Google ScholarCrossref
  39. 39. R. Raucoules, N. Vast, E. Betranhandy, and J. Sjakste, “Mechanical properties of icosahedral boron carbide explained from first principles,” Phys. Rev. B 84, 014112 (2011). https://doi.org/10.1103/PhysRevB.84.014112, Google ScholarCrossref
  40. 40. Q. An, W. A. Goddard III, and T. Cheng, “Atomistic explanation of shear-induced amorphous band formation in boron carbide,” Phys. Rev. Lett. 113, 095501 (2014), https://doi.org/10.1103/PhysRevLett.113.095501, Google ScholarCrossref
  41. 41. D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris, “Ideal shear strengths of fcc aluminum and copper,” Phys. Rev. Lett. 82, 2713–2716 (1999). https://doi.org/10.1103/PhysRevLett.82.2713, Google ScholarCrossref
  42. 42. Y. Zhang, H. Sun, and C. Chen, “Superhard cubic BC2N compared to diamond,” Phys. Rev. Lett. 93, 195504 (2004). https://doi.org/10.1103/PhysRevLett.93.195504, Google ScholarCrossref
  43. 43. D. Roundy and M. L. Cohen, “Ideal strength of diamond, Si, and Ge,” Phys. Rev. B 64, 212103 (2001). https://doi.org/10.1103/PhysRevB.64.212103, Google ScholarCrossref
  44. 44. J. A. Ciezak and D. P. Dandekar, “Compression and associated properties of boron carbide (B4C),” AIP Conf. Proc. 1195, 1287–1290 (2009). https://doi.org/10.1063/1.3295041, Google ScholarScitation
  45. 45. Q. An and W. A. Goddard III, “Atomistic origin of brittle failure of boron carbide from large scale reactive dynamics simulations: Suggestions toward improved ductility,” Phys. Rev. Lett. 115, 105501 (2015). https://doi.org/10.1103/PhysRevLett.115.105501, Google ScholarCrossref
  46. 46. A. Jay, N. Vast, J. Sjakste, and O. H. Duparc, “Carbon-rich icosahedral boron carbide designed from first principles,” Appl. Phys. Lett. 105, 031914 (2014). https://doi.org/10.1063/1.4890841, Google ScholarScitation, ISI
  47. 47. R. Caracas and R. E. Cohen, “Theoretical determination of the Raman spectra of MgSiO3 perovskite and post-perovskite at high pressure,” Geophys. Res. Lett. 33, L12S05 (2006), https://doi.org/10.1029/2006GL025736, Google ScholarCrossref
  48. 48. R. Caracas and E. J. Banigan, “Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density functional perturbation theory,” Phys. Earth Planet. Interiors 174, 113–121 (2009). https://doi.org/10.1016/j.pepi.2009.01.001, Google ScholarCrossref
  49. 49. V. I. Ivashchenko, V. I. Shevchenko, and P. E. A. Turchi, “First-principles study of the atomic and electronic structures of crystalline and amorphous B4C,” Phys. Rev. B 80, 235208 (2009). https://doi.org/10.1103/PhysRevB.80.235208, Google ScholarCrossref
  50. 50. The reversible sign in this equation is used because Yan et al.25 demonstrated that annleaing pressure-induced amorphized boron carbide diminishes the Raman spectral features of amorphous boron carbide and restores intensities of Raman spectral crystalline peaks. Google Scholar
  51. 51. V. Blank, V. Churkin, B. Kulnitskiy, I. Perezhogin, A. Kirichenko, S. Erohin, P. Sorokin, and M. Popov, “Pressure-induced transformation of graphite and diamond to onions,” Crystals 8, 68 (2018). https://doi.org/10.3390/cryst8020068, Google ScholarCrossref
  52. 52. G. B. Bacskay and S. Nordholm, “Covalent bonding: The fundamental role of the kinetic energy,” J. Phys. Chem. A 117, 7946–7958 (2013). https://doi.org/10.1021/jp403284g, Google ScholarCrossref
  53. 53. T. J. Vogler, W. D. Reinhart, and L. C. Chhabildas, “Dynamic behavior of boron carbide,” J. Appl. Phys. 95, 4173–4183 (2004). https://doi.org/10.1063/1.1686902, Google ScholarScitation, ISI
  54. 54. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. Lond. A 241, 376–396 (1957), see https://doi.org/10.1098/rspa.1957.0133 http://rspa.royalsocietypublishing.org/content/241/1226/376.full.pdf, Google ScholarCrossref, ISI
  55. 55. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger, “Abinit: First-principles approach to material and nanosystem properties,” Comput. Phys. Commun. 180, 2582–2615 (2009). https://doi.org/10.1016/j.cpc.2009.07.007, Google ScholarCrossref
  56. 56. O. Sologub, Y. Michiue, and T. Mori, “Boron carbide, B13xC2y (x=0.12, y=0.01),” Acta Crystallogr. E 68, i67 (2012). https://doi.org/10.1107/S1600536812033132, Google ScholarCrossref
  57. 57. M. Veithen, X. Gonze, and P. Ghosez, “Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory,” Phys. Rev. B 71, 125107 (2005). https://doi.org/10.1103/PhysRevB.71.125107, Google ScholarCrossref
  58. 58. See www.wurm.info for “Wurm Project: A Database of Computed Physical Properties of Minerals” (2013). Google Scholar
  1. © 2019 Author(s). Published under license by AIP Publishing.