Open Submitted: 18 December 2018 Accepted: 13 March 2019 Published Online: 16 April 2019
APL Materials 7, 041114 (2019); https://doi.org/10.1063/1.5086125
more...View Affiliations
View Contributors
  • Yu Zhong
  • Carlos Andres Melo Luna
  • Richard Hildner
  • Cheng Li
  • Sven Huettner

Organolead halide perovskite solar cells (PSCs) have generated extensive attention recently with power conversion efficiency (PCE) exceeding 23%. However, these PSCs exhibit photoinduced instability in the course of their current-voltage measurements. In this work, we study the light-induced behavior in CH3NH3PbI3−xClx films in situ, by employing wide-field photoluminescence (PL) microscopy to obtain both the spatially and temporally resolved PL images simultaneously. Along with the increase in the PL intensity under continuous illumination, some areas render PL inactive. By characterizing the excitation energy dependent long-time PL decay behavior, we suggest that the PL quenching can be ascribed to a localized accumulation of iodide ions driven by the optical field. This ion localization leads to an enhancement of non-radiative recombination. The appearance of the PL inactive areas in the perovskite film impedes its photovoltaic device performance approaching the theoretical maximum PCE. Therefore, the herein presented real-time investigation of the light soaking of perovskite films is a versatile and adaptable method providing more details to improve the performance of PSCs.
Organolead halide perovskites [e.g., CH3NH3PbX3 (X = I, Cl, Br)] have received intensive attention since 2012,1,21. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015). https://doi.org/10.1126/science.aaa92722. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591 as they offer a new class of photovoltaic materials for low-cost and high-efficiency solar cells. Experiments toward a better understanding of their properties and fabrication processes have extensively been carried out, ranging from fundamental studies to device applications and long-term stability tests.3–53. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013). https://doi.org/10.1126/science.12439824. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013). https://doi.org/10.1126/science.12431675. F. Panzer, C. Li, T. Meier, A. Köhler, and S. Huettner, Adv. Energy Mater. 7, 1700286 (2017). https://doi.org/10.1002/aenm.201700286 To minimize the degradation of the perovskite materials, scientists have made improvements on film quality and device stability, by controlling crystalline grain growth,6,76. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Science 353, 58 (2016). https://doi.org/10.1126/science.aaf80607. N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, and K. Emery, Nat. Energy 1, 16152 (2016). https://doi.org/10.1038/nenergy.2016.152 developing quasi-2D structures,8,98. Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.1359. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684 or incorporating different cations.10,1110. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Science 354, 206 (2016). https://doi.org/10.1126/science.aah555711. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, and N.-G. Park, J. Am. Chem. Soc. 140, 1358 (2018). https://doi.org/10.1021/jacs.7b10430 However, the detailed mechanism on optical/electrical induced degradation is still not fully elucidated.
Photoluminescence (PL), i.e., the radiative recombination process after optical excitation, has been demonstrated to give a strong correlation with film quality and device performance. The PL decay can demonstrate the charge carrier life time,12,1312. J. A. Giesecke, M. C. Schubert, B. Michl, F. Schindler, and W. Warta, Sol. Energy Mater. Sol. Cells 95, 1011 (2011). https://doi.org/10.1016/j.solmat.2010.12.01613. Z. Hameiri, A. Mahboubi Soufiani, M. K. Juhl, L. Jiang, F. Huang, Y.-B. Cheng, H. Kampwerth, J. W. Weber, M. A. Green, and T. Trupke, Prog. Photovoltaics: Res. Appl. 23, 1697 (2015). https://doi.org/10.1002/pip.2716 the spatial distribution of defect density, and the charge carrier recombination.14,1514. K. Zheng, K. Žídek, M. Abdellah, M. E. Messing, M. J. Al-Marri, and T. Pullerits, J. Phys. Chem. C 120, 3077 (2016). https://doi.org/10.1021/acs.jpcc.6b0061215. W. Tress, Adv. Energy Mater. 7, 1602358 (2017). https://doi.org/10.1002/aenm.201602358 For instance, in the vicinity of perovskite grain boundaries, more defects are prevalent, resulting in non-radiative decay and a lower PL intensity.1616. D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Science 348, 683 (2015). https://doi.org/10.1126/science.aaa5333 Any non-radiative recombination would impair the carrier density buildup, preventing the photovoltaic device from approaching the theoretical Shockley-Queisser efficiency limit, i.e., the maximum theoretically achievable power conversion efficiency (PCE).1717. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2, 303 (2012). https://doi.org/10.1109/jphotov.2012.2198434
The light soaking behavior of perovskite films is crucial for long-term stability of devices. It is reported that within light-soaking, the performance of perovskite solar cells (PSCs) improves.18,1918. Y. Deng, Z. Xiao, and J. Huang, Adv. Energy Mater. 5, 1500721 (2015). https://doi.org/10.1002/aenm.20150072119. C. Zhao, B. Chen, X. Qiao, L. Luan, K. Lu, and B. Hu, Adv. Energy Mater. 5, 1500279 (2015). https://doi.org/10.1002/aenm.201500279 However, under long-time illumination, perovskite films may also undergo at first reversible transformation20,2120. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms1157421. S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, and P. V. Kamat, ACS Energy Lett. 1, 290 (2016). https://doi.org/10.1021/acsenergylett.6b00158 and then irreversible degradation.22,2322. W. Huang, S. J. Yoon, and P. Sapkota, ACS Appl. Energy Mater. 1, 2859 (2018). https://doi.org/10.1021/acsaem.8b0051323. R. P. Xu, Y. Q. Li, T. Y. Jin, Y. Q. Liu, Q. Y. Bao, C. O’Carroll, and J. X. Tang, ACS Appl. Mater. Interfaces 10, 6737 (2018). https://doi.org/10.1021/acsami.7b18389 These reversible transformations can be attributed to the formation of light-activated trap states2020. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms11574 or photo-induced halide ion segregation.2121. S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, and P. V. Kamat, ACS Energy Lett. 1, 290 (2016). https://doi.org/10.1021/acsenergylett.6b00158 In this work, we focus on the reversible changes in perovskite films. With a temporally and spatially resolved PL imaging method,2424. C. A. Combs, Curr. Protoc. Neurosci. 50, 2.1.1 (2010). https://doi.org/10.1002/0471142301.ns0201s50 the presence of PL inactive areas on a micrometer scale was detected during light soaking, which should result from halide ion accumulation. By varying the laser intensity, the PL decay dynamics were studied.
Planar PSCs based on CH3NH3PbI3−xClx were fabricated, with the highest PCE of 15.4% [current density-voltage (J-V) curve shown in Fig. 1(a)]. The device structure of these PSCs is shown in Fig. S3 of the supplementary material. We characterized the time dependent PCE of a solar cell device under continuous illumination (standard AM 1.5G illumination of 100 mW/cm2) in nitrogen atmosphere. It was scanned from positive voltage to negative, noted as reverse scan. The PCE decreases to 12.6% within 500 s, as shown in Fig. 1(b). For comparison, we measured the PCE of a PSC without continuous illumination and the PCE showed a slight decrease. Already after 30 s of continuous light soaking, the PCE yielded a clear reduction for the herein used material system [illustrated in Fig. S5(a) of the supplementary material]. This suggests that this PCE decay is ascribed to the constant illumination rather than the electrical scanning. On the other hand, this light-induced PCE decay can be recovered in dark, as demonstrated in Fig. S5(b) of the supplementary material.
A thorough J-V characterization is presented in Fig. S4 of the supplementary material. With different scan rates and scan directions, the performance of a PSC varies. This is the hysteresis behavior discussed in many papers.25–2825. S. N. Habisreutinger, N. K. Noel, and H. J. Snaith, ACS Energy Lett. 3, 2472 (2018). https://doi.org/10.1021/acsenergylett.8b0162726. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, and S. Huettner, Adv. Mater. 28, 2446 (2016). https://doi.org/10.1002/adma.20150383227. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, and S. Priya, J. Phys. Chem. Lett. 6, 4693 (2015). https://doi.org/10.1021/acs.jpclett.5b0222928. D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck, T. P. White, K. Weber, and K. R. Catchpole, Phys. Chem. Chem. Phys. 19, 3094 (2017). https://doi.org/10.1039/c6cp06989d The relationship between the hysteresis and ion migration has been comprehensively reported.26,2826. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, and S. Huettner, Adv. Mater. 28, 2446 (2016). https://doi.org/10.1002/adma.20150383228. D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck, T. P. White, K. Weber, and K. R. Catchpole, Phys. Chem. Chem. Phys. 19, 3094 (2017). https://doi.org/10.1039/c6cp06989d Our PSC yields a distinct hysteresis behavior, which reveals that ion migration exists in this perovskite material. With continuous illumination, the hysteresis behavior of the PSC decreases (shown in Fig. S4-2 of the supplementary material). The PCE in forward scan increases (from negative voltage to positive) and in reverse scan decreases. It indicates the halide ion redistribution in perovskite.
The changes in short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) under illumination are shown in Fig. S3 of the supplementary material. There is an obvious reduction of Voc, while Jsc keeps nearly constant. For comparison, as shown in Fig. S5(a) of the supplementary material, a distinct Voc decays with 30 s of illumination. In most cases, one dominant reason of the deterioration of a solar cell Voc is the poor external luminescence efficiency.1515. W. Tress, Adv. Energy Mater. 7, 1602358 (2017). https://doi.org/10.1002/aenm.201602358 The lower external luminescence reveals that some photons are wasted in nonradiative recombination or parasitic optical absorption.17,2917. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2, 303 (2012). https://doi.org/10.1109/jphotov.2012.219843429. R. T. Ross, J. Chem. Phys. 46, 4590 (1967). https://doi.org/10.1063/1.1840606 For a working PSC, the decrease in external luminescence can result from the accumulation of ions on the interface.3030. A. M. Soufiani, Z. Hameiri, S. Meyer, S. Lim, M. J. Y. Tayebjee, J. S. Yun, A. Ho-Baillie, G. J. Conibeer, L. Spiccia, and M. A. Green, Adv. Energy Mater. 7, 1602111 (2017). https://doi.org/10.1002/aenm.201602111 Our measurements indicate that besides the bias-driven ion effect, the illumination is another factor of luminescence decay. Tracking the long-time PL behavior with a wide-field PL microscope is a good way to locally study the carrier recombination in perovskite films. Thus, we employed this method to investigate the light-induced long-term decay effect. The detailed description of this technique has been reported elsewhere.31,3231. A. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Kohler, H.-W. Schmidt, and R. Hildner, Nature 523, 196 (2015). https://doi.org/10.1038/nature1457032. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner, and S. Huettner, Small 13, 1701711 (2017). https://doi.org/10.1002/smll.201701711 Briefly, a wide field PL microscope equipped with an oil-immersion objective with a 100× magnification, a 532 nm laser for excitation, and a fast charge-coupled device (CCD) camera was employed to track the time dependent fluorescence as shown in Fig. 1(c). Note that the perovskite films were covered with polymethyl methacrylate (PMMA) to be protected from ambient air.3333. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, and N. Zhao, Adv. Funct. Mater. 24, 7102 (2014). https://doi.org/10.1002/adfm.201401872 To illuminate a large area (diameter ∼60 μm) of the film homogeneously, we additionally inserted a wide-field lens in the excitation beam path. Rather than small areas characterized by classical confocal microscopy,3434. S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, and A. Ho-Baillie, ACS Appl. Mater. Interfaces 8, 5351 (2016). https://doi.org/10.1021/acsami.5b12376 this allows us to characterize the temporal and spatial evolutions of the PL intensity in a larger area with time-resolution as short as 50 ms and a spatial resolution of about 300 nm. Figure 1(d) shows a PL image of a CH3NH3PbI3−xClx perovskite film. It displays densely packed grains with a few pinholes, which is consistent with the image taken by a scanning electron microscope (SEM) (Fig. S6-1 of the supplementary material). Due to the limited resolution of optical microscopy, grains with size smaller than 300 nm cannot be distinguished anymore. Correlated SEM and PL images at one spot are presented in Fig. S6-2 of the supplementary material and we can observe the PL emission from each crystal grain. Additionally, the morphology of this perovskite film is similar to the perovskite film spin coated on the TiO2 layer (Fig. S6-3 of the supplementary material). Thus, it is acceptable to use this perovskite film in order to study the light-soaking behavior.
Figure 2 shows a series of PL images of the perovskite surface under continuous light illumination (532 nm, 40 mW/cm2). Beside a PL intensity increase of the whole film, certain dark regions are observed. The first PL dark region, which is in the left bottom part of the image [see Fig. 2(b)], appeared within 10 s. This indicates that charge carrier recombination in these areas transforms from radiative to non-radiative. With longer illumination time, the number of dark areas increases. The overall PL evolution is shown in the supplementary material, S10 Video. This phenomenon is described as the appearance of PL inactive areas or PL quenching in this work. We analyze the temporal PL intensity of one PL inactive area and find that the PL intensity yields an enhancement within the first 45 s and then it decreases, as illustrated in Fig. 3(a). Except for the PL inactive areas, the PL intensity of the other part increases, as shown in Fig. 3(b). This PL increase of the perovskite film under illumination has been reported,35,36,3235. C. Li, Y. Zhong, C. Luna, T. Unger, K. Deichsel, A. Gräser, J. Köhler, A. Köhler, R. Hildner, and S. Huettner, Molecules 21, 1081 (2016). https://doi.org/10.3390/molecules2108108136. Y. Tian, A. Merdasa, E. Unger, M. Abdellah, K. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, V. Sundström, and I. G. Scheblykin, J. Phys. Chem. Lett. 6, 4171 (2015). https://doi.org/10.1021/acs.jpclett.5b0203332. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner, and S. Huettner, Small 13, 1701711 (2017). https://doi.org/10.1002/smll.201701711 arising from traps filled,3737. S. Chen, X. Wen, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, Sol. RRL 1, 1600001 (2017). https://doi.org/10.1002/solr.201600001 or defect annihilation during light illumination.38,3938. D. W. deQuilettes, W. Zhang, V. M. Burlakov, D. J. Graham, T. Leijtens, A. Osherov, V. Bulović, H. J. Snaith, D. S. Ginger, and S. D. Stranks, Nat. Commun. 7, 11683 (2016). https://doi.org/10.1038/ncomms1168339. E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, and F. De Angelis, Energy Environ. Sci. 9, 3180 (2016). https://doi.org/10.1039/c6ee01504b
The phenomenon that the PL intensity of the perovskite film decreases after a PL enhancement has been discussed recently. Gottesman et al. observed that the PL of a CH3NH3PbI3 film gradually decreased by ∼40% under 1 h illumination.4040. R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh-Hodesh, Y. Tischler, A. Zaban, C. Quarti, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 6, 2332 (2015). https://doi.org/10.1021/acs.jpclett.5b00994 Juan et al. found a PL decrease following a PL enhancement of the bulk perovskite film both in air and in nitrogen.4141. J. F. Galisteo-López, M. Anaya, M. E. Calvo, and H. Míguez, J. Phys. Chem. Lett. 6, 2200 (2015). https://doi.org/10.1021/acs.jpclett.5b00785 The Voc of PSCs is related to the PL intensity because the PL lowering indicates that the generation of trap states reduces the quasi-Fermi-level for the electrons4242. S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Phys. Rev. Appl. 2, 034007 (2014). https://doi.org/10.1103/physrevapplied.2.034007 and consequently leads to a decrease in the Voc.18,1918. Y. Deng, Z. Xiao, and J. Huang, Adv. Energy Mater. 5, 1500721 (2015). https://doi.org/10.1002/aenm.20150072119. C. Zhao, B. Chen, X. Qiao, L. Luan, K. Lu, and B. Hu, Adv. Energy Mater. 5, 1500279 (2015). https://doi.org/10.1002/aenm.201500279 In Fig. S3(c) of the supplementary material, the Voc of a PSC shows an obvious decrease within the first 100 s and resembles the time when the PL dark areas show up.
In order to elucidate the origin of this PL quenching phenomenon, first, we need to assess whether it is caused by chemical degradation of perovskite. After laser illumination, the perovskite film was kept in dark for several minutes and its PL image was obtained in Fig. 3(c). We found that the PL inactive or PL quenching areas in the film reverted to their PL active state, i.e., showing radiative recombination again. This indicates that this process is reversible, originating from ionic movement,32,2032. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner, and S. Huettner, Small 13, 1701711 (2017). https://doi.org/10.1002/smll.20170171120. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms11574 reversible structural transformation,40,4340. R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh-Hodesh, Y. Tischler, A. Zaban, C. Quarti, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 6, 2332 (2015). https://doi.org/10.1021/acs.jpclett.5b0099443. R. Gottesman and A. Zaban, Acc. Chem. Res. 49, 320 (2016). https://doi.org/10.1021/acs.accounts.5b00446 or surface charge trapping/detrapping44,4544. T. Tachikawa, I. Karimata, and Y. Kobori, J. Phys. Chem. Lett. 6, 3195 (2015). https://doi.org/10.1021/acs.jpclett.5b0156645. H. Yuan, E. Debroye, G. Caliandro, K. P. F. Janssen, J. van Loon, C. E. A. Kirschhock, J. A. Martens, J. Hofkens, and M. B. J. Roeffaers, ACS Omega 1, 148 (2016). https://doi.org/10.1021/acsomega.6b00107 rather than an irreversible chemical degradation, e.g., long-term decomposition of perovskite46,2246. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/c3ta13606j22. W. Huang, S. J. Yoon, and P. Sapkota, ACS Appl. Energy Mater. 1, 2859 (2018). https://doi.org/10.1021/acsaem.8b00513 or gas release of CH3NH3I after long-term electrical biasing.47,4847. X. Deng, X. Wen, J. Lau, T. Young, J. Yun, M. Green, S. Huang, and A. W. Y. Ho-Baillie, J. Mater. Chem. C 4, 9060 (2016). https://doi.org/10.1039/c6tc03206k48. H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-i, F. De Schryver, P. Samorì, J. Hofkens, and M. Roeffaers, J. Phys. Chem. Lett. 7, 561 (2016). https://doi.org/10.1021/acs.jpclett.5b02828 Furthermore, it seems not to originate from the reversible perovskite hydration process. When perovskite hydrates form, the PL intensity at boundaries tends to increase as shown in Fig. S9 of the supplementary material. The reason is that perovskite hydrates first form at the grain interfaces and these hydrates will impede carrier transport along different grains.49,5049. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b0066050. Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, and M. J. Heben, Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846 As a result, the recombination at the grain interfaces is enhanced.4949. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660 This is different from the results observed in Fig. 2.
To investigate the mechanism of the PL quenching, the temporal evolution of the PL signal on individual grains under different illumination intensities is studied. As shown in Fig. 3(a), the PL intensity in the dark areas decays under continuous light soaking. Taking into account three individual domains observed under different excitation intensities, we obtain that the long-term decay time is 25 ± 9 s for 43 mW/cm2 and 13 ± 6 s for 430 mW/cm2, following single exponential functions. The PL intensity of these grains decays faster under high illumination (430 mW/cm2) intensity than under low intensity (43 mW/cm2), consistent with the observation by Chen et al.3434. S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, and A. Ho-Baillie, ACS Appl. Mater. Interfaces 8, 5351 (2016). https://doi.org/10.1021/acsami.5b12376 The time scale of the PL decay is ∼10 s, which is in the same time scale of halide ion migration in the perovskite film.26,34,5126. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, and S. Huettner, Adv. Mater. 28, 2446 (2016). https://doi.org/10.1002/adma.20150383234. S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, and A. Ho-Baillie, ACS Appl. Mater. Interfaces 8, 5351 (2016). https://doi.org/10.1021/acsami.5b1237651. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497 Meanwhile, our J-V measurements on PSCs yield hysteretic behavior, suggesting the possible halide ion (i.e., vacancy) migration. We can therefore associate this PL quenching behavior with the migration and accumulation of ions.
Several studies have proved the halide ion migration in the organolead perovskite film. By combination of time-of-flight secondary-ion-mass spectrometry (ToF-SIMS) and PL microscopy, deQuilettes et al. detected the iodide element signal through a depth profile at the illuminated region and showed the iodide redistribution with the optical field.3838. D. W. deQuilettes, W. Zhang, V. M. Burlakov, D. J. Graham, T. Leijtens, A. Osherov, V. Bulović, H. J. Snaith, D. S. Ginger, and S. D. Stranks, Nat. Commun. 7, 11683 (2016). https://doi.org/10.1038/ncomms11683 In addition, the results of scanning Kelvin probe microscopy (SKPM) demonstrated a surface potential shift of the perovskite layer under illumination,52–5452. J. R. Harwell, T. K. Baikie, I. D. Baikie, J. L. Payne, C. Ni, J. T. S. Irvine, G. A. Turnbull, and I. D. W. Samuel, Phys. Chem. Chem. Phys. 18, 19738 (2016). https://doi.org/10.1039/c6cp02446g53. V. W. Bergmann, S. A. L. Weber, F. Javier Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, and R. Berger, Nat. Commun. 5, 5001 (2014). https://doi.org/10.1038/ncomms600154. V. W. Bergmann, Y. Guo, H. Tanaka, I. M. Hermes, D. Li, A. Klasen, S. A. Bretschneider, E. Nakamura, R. Berger, and S. A. L. Weber, ACS Appl. Mater. Interfaces 8, 19402 (2016). https://doi.org/10.1021/acsami.6b04104 which can drive the mobile ions. The activation energy of the iodide migration in the perovskite polycrystalline thin film has been estimated between ∼0.1 eV and ∼0.6 eV.51,55,5651. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms849755. J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, Energy Environ. Sci. 8, 2118 (2015). https://doi.org/10.1039/c5ee01265a56. C. Li, A. Guerrero, Y. Zhong, and S. Huettner, J. Phys.: Condens. Matter 29, 193001 (2017). https://doi.org/10.1088/1361-648x/aa626d Xing et al.5757. J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, and J. Huang, Phys. Chem. Chem. Phys. 18, 30484 (2016). https://doi.org/10.1039/c6cp06496e found the reduction of the activation energy of mobile ions under illumination. Very recently, Li et al. pointed out the role of iodide vacancies as the main migrating species respective to iodide ions.5858. C. Li, A. Guerrero, S. Huettner, and J. Bisquert, Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6 Therefore, we reiterate that the light-induced electrical field in the film can promote the iodide ions/vacancies to migrate.
We propose that the origin of the PL inactive areas in Fig. 2 is the redistribution and localization of halide ions. Both Hoke et al.5959. E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, Chem. Sci. 6, 613 (2015). https://doi.org/10.1039/c4sc03141e and Yoon et al.2121. S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, and P. V. Kamat, ACS Energy Lett. 1, 290 (2016). https://doi.org/10.1021/acsenergylett.6b00158 also successfully tracked the formation of I-rich and Br-rich domains in MAPb(BrxI1−x)3 films, which is induced from the halide ion movement under illumination. As reported, halide ions in perovskites possess a relatively low activation energy, compared to other ions.5656. C. Li, A. Guerrero, Y. Zhong, and S. Huettner, J. Phys.: Condens. Matter 29, 193001 (2017). https://doi.org/10.1088/1361-648x/aa626d Therefore, with light-soaking, halide ions tend to migrate more readily in the perovskite film and localize at grain boundaries or some defective grains. That may happen, when halide ions are immobilized at grains with a high defect density potentially allowing the formation of further interstitial defects that render non-radiative recombination centers.60,6160. M. H. Du, J. Phys. Chem. Lett. 6, 1461 (2015). https://doi.org/10.1021/acs.jpclett.5b0019961. M. H. Du, J. Mater. Chem. A 2, 9091 (2014). https://doi.org/10.1039/c4ta01198h Another possibility is the segregation of halide ions at grain boundaries.6262. D. J. Slotcavage, H. I. Karunadasa, and M. D. McGehee, ACS Energy Lett. 1, 1199 (2016). https://doi.org/10.1021/acsenergylett.6b00495 In these segregated domains, the recombination changes from radiative to non-radiative.
As briefly mentioned above, interstitial defects indeed may play a significant role in quenched photoluminescence, creating deep trap states and acting as non-radiative recombination centers.20,6320. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms1157463. D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball, C. Andrea Riccardo Perini, F. Deschler, A. Petrozza, and F. De Angelis, Energy Environ. Sci. 11, 702 (2018). https://doi.org/10.1039/c8ee00124c It is worth mentioning that calculations attribute, among native point defects, only iodine interstitials to form deep carrier traps and non-radiative recombination centers, whereas all vacancies, cation interstitials, and some antisite defects create only shallow levels.60,6160. M. H. Du, J. Phys. Chem. Lett. 6, 1461 (2015). https://doi.org/10.1021/acs.jpclett.5b0019961. M. H. Du, J. Mater. Chem. A 2, 9091 (2014). https://doi.org/10.1039/c4ta01198h The origin of point defects shall be found in Frenkel defects, forming a vacancy and an interstitial, which have been reported to be abundant in MAPI films.6464. S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, and D. S. Ginger, J. Phys. Chem. C 122, 12633 (2018). https://doi.org/10.1021/acs.jpcc.8b03255 The much higher diffusion constant of vacancies compared to interstitials leaves behind interstitials as non-radiative recombination centers.65,60,6665. D. Meggiolaro, E. Mosconi, and F. De Angelis, ACS Energy Lett. 3, 447 (2018). https://doi.org/10.1021/acsenergylett.7b0124460. M. H. Du, J. Phys. Chem. Lett. 6, 1461 (2015). https://doi.org/10.1021/acs.jpclett.5b0019966. H. Shi and M. H. Du, Phys. Rev. B 90, 174103 (2014). https://doi.org/10.1103/PhysRevB.90.174103 In a similar context, it has been reported that a bias voltage is applied on a perovskite film with laterally configured electrodes, facilitating an increasingly PL quenched region starting from the positive electrode. This is a consequence of iodide vacancies migrating towards the negative electrode,32,3432. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner, and S. Huettner, Small 13, 1701711 (2017). https://doi.org/10.1002/smll.20170171134. S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, and A. Ho-Baillie, ACS Appl. Mater. Interfaces 8, 5351 (2016). https://doi.org/10.1021/acsami.5b12376 changing the effective electron-hole concentration5858. C. Li, A. Guerrero, S. Huettner, and J. Bisquert, Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6 and leaving a larger number of interstitials behind acting as non-radiative quenching sites.
We found that two main factors for the appearance of these PL inactive areas are the optical intensity gradient of the light source and the film quality. Another PL microscope with a white light-emitting diode (LED) was used to observe this light-soaking effect. In the center of the illuminated area, few PL dark areas were detected. Most PL dark areas are present at the edge of the exposed area (shown in Fig. 4). This is exactly correlated with the light source beam profile as shown in Fig. S8(b) of the supplementary material with a strong intensity gradient right at the edge of the illuminated area. It reveals that the horizontal optical intensity gradient is crucial for driving mobile ions and ion-aggregated PL quenching behavior. We also notice that an old film shows more PL inactive areas than a fresh film. It is ascribed to the degradation of perovskite and more defects or mobile ions in the old film. Thus, the film quality and the presence of surface defects is an important factor. To check this, we employed this experiment on a perovskite film with PCBM molecules, which have been shown to passivate surface/grain boundary defects.67,6867. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms678468. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081 This passivated perovskite film exhibits little difference in PL images before and after illumination, even at high excitation intensities and gradients [as displayed in Figs. S7(e)–S7(j) of the supplementary material]. It needs to be noted that not only the passivated defects in perovskite films but also the weakened light-induced field by PCBM contributes to this phenomenon.
By combining the above analysis, the proposed mechanism of PL quenching phenomenon is illustrated in Fig. 5. Before illumination, the iodide ions are uniformly distributed in the perovskite film, as shown in Fig. 5(a). Under illumination, the optical field decreases with penetration depth and is laterally limited by its spot size, giving rise to gradients in the diffusion constants of ion field both vertically and horizontally, which redistributes iodide ions. During the migration process, regions with higher density of defects can result in the localization of ions.61,69,7061. M. H. Du, J. Mater. Chem. A 2, 9091 (2014). https://doi.org/10.1039/c4ta01198h69. X. Wen, A. Ho-Baillie, S. Huang, R. Sheng, S. Chen, H. Ko, and M. A. Green, Nano Lett. 15, 4644 (2015). https://doi.org/10.1021/acs.nanolett.5b0140570. Y. Yuan and J. Huang, Acc. Chem. Res. 49(2), 286 (2016). https://doi.org/10.1021/acs.accounts.5b00420 Different effects can lead to non-radiative recombination: Charge accumulation at surface and grain boundaries enhance Auger-type non-radiative recombination, which is predominantly seen in nanoparticles.6969. X. Wen, A. Ho-Baillie, S. Huang, R. Sheng, S. Chen, H. Ko, and M. A. Green, Nano Lett. 15, 4644 (2015). https://doi.org/10.1021/acs.nanolett.5b01405 Iodide interstitials, in particular, have been pointed out to create deep level defects, resulting in non-radiative recombination centers.6161. M. H. Du, J. Mater. Chem. A 2, 9091 (2014). https://doi.org/10.1039/c4ta01198h Also, the change in the effective hole concentration towards more intrinsic may reduce the PL quantum yield.5858. C. Li, A. Guerrero, S. Huettner, and J. Bisquert, Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6 Given the fact that the herein observed effects are rather inhomogeneously distributed and become stronger with lower quality of films, the assumption is that the creation of defect sites (i.e., interstitials) is caused by the local sample inhomogeneities and the accumulation of iodide ions at defective grains as illustrated in Fig. 5(c). The migration pathway can be through the iodine interstitial sites.7171. J. L. Minns, P. Zajdel, D. Chernyshov, W. Van Beek, and M. A. Green, Nat. Commun. 8, 15152 (2017). https://doi.org/10.1038/ncomms15152 When the illumination intensity increases, the activation energy of halide ions decreases,57,7257. J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, and J. Huang, Phys. Chem. Chem. Phys. 18, 30484 (2016). https://doi.org/10.1039/c6cp06496e72. Y. C. Zhao, W. K. Zhou, X. Zhou, K. H. Liu, D. P. Yu, and Q. Zhao, Light: Sci. Appl. 6, e16243 (2017). https://doi.org/10.1038/lsa.2016.243 leading to a faster migration and hence an enhanced possible trapping and accumulation of ions at defect sites resulting in a faster PL decay of these regions. This explains the observation in Fig. 4(c) that more PL inactive areas appear at the edge beyond the illuminated area, where the iodide ions are driven out. Once they reach the non-illuminated area, their mobility will decrease and they will be almost immobile there, thus leading to a certain localization of redistributed iodide ions. We speculate that this additionally increases the chance for the formation of interstitial defects taking into account their low formation energy,39,7339. E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, and F. De Angelis, Energy Environ. Sci. 9, 3180 (2016). https://doi.org/10.1039/c6ee01504b73. W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778 rendering non-radiative recombination centers.
The appearance of dark PL-inactive areas in perovskite films under illumination reveals that the migration and accumulation of halide ions has a negative effect on the stable output of perovskite photovoltaics. Thus, suppressing the halide ion migration in the perovskite films is one of the key issues to further improve the performance and stability of photovoltaic devices. Controlling the crystal quality and size can be an effective way,7474. W. Nie, H. Tsai, R. Asadpour, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, and H. Wang, Science 347, 522 (2015). https://doi.org/10.1126/science.aaa0472 as most of the mobile ions originate from defects at the grain boundaries/surface.36,70,7536. Y. Tian, A. Merdasa, E. Unger, M. Abdellah, K. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, V. Sundström, and I. G. Scheblykin, J. Phys. Chem. Lett. 6, 4171 (2015). https://doi.org/10.1021/acs.jpclett.5b0203370. Y. Yuan and J. Huang, Acc. Chem. Res. 49(2), 286 (2016). https://doi.org/10.1021/acs.accounts.5b0042075. J. S. Yun, J. Seidel, J. Kim, A. M. Soufiani, S. Huang, J. Lau, N. J. Jeon, S. Il Seok, M. A. Green, and A. Ho-Baillie, Adv. Energy Mater. 6, 1600330 (2016). https://doi.org/10.1002/aenm.201600330 Another choice is passivating the defects with external particles, such as PCBM6868. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081 or K+.1111. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, and N.-G. Park, J. Am. Chem. Soc. 140, 1358 (2018). https://doi.org/10.1021/jacs.7b10430 Meanwhile, the intensity distribution of the light source should be an issue for the stable output of PSCs.
In summary, wide-field PL microscopy is demonstrated as a simple and versatile method in characterizing the quality and stability of perovskite films. We employed wide-field PL microscopy to in situ investigate the PL changes of a perovskite film with light soaking on time scales of seconds. Besides the PL enhancement, some areas in the film yield a PL quenching. This PL quenching behavior plays an important role in PSCs because non-radiative recombination prevents PCEs from approaching the Shockley-Queisser efficiency limit. By characterizing the intensity dependent PL long-time decay process, we observe that the migration and localization of iodide ions in the perovskite film within an optical field gradient contribute to this non-radiative recombination. It is the first time to visually observe the accumulation of iodide ions during light soaking inducing non-radiative recombination. This either occurs at defective sites that are prone to accumulate and trap ions or at the gradient between the illuminated and non-illuminated areas.
See supplementary material for the sample preparation method, characterization details, the change in Voc, Jsc, and FF with light soaking, the observation of CH3NH3PbI3−xClx film with AFM, SEM, and PL microscopy, and the beam profile of light source.
Financial support by the Bavarian State Ministry of Science, Research and the Arts for the Collaborative Research Network “Solar Technologies go Hybrid” and Federal Ministry of Education as well as the German Research Foundation (DFG) is gratefully acknowledged. Richard Hildner and Carlos Andres Melo Luna acknowledge additional funding from DFG - GRK1640. Yu Zhong acknowledges funding from the China Scholarship Council. Carlos Andres Melo Luna acknowledges funding from the Colombian Science, Technology and Innovation Fund-General Royalties System (Fondo CTeI-Sistema General de Regalías, Contract No. BPIN 2013000100007) and CIBioFi. We thank Jürgen Köhler and Kevin Wilma for experimental support. This open access publication was funded through the Open Access Publishing programme of the DFG and University of Bayreuth.
  1. 1. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015). https://doi.org/10.1126/science.aaa9272, Google ScholarCrossref, ISI
  2. 2. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591, Google ScholarCrossref, ISI
  3. 3. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013). https://doi.org/10.1126/science.1243982, Google ScholarCrossref, ISI
  4. 4. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013). https://doi.org/10.1126/science.1243167, Google ScholarCrossref, ISI
  5. 5. F. Panzer, C. Li, T. Meier, A. Köhler, and S. Huettner, Adv. Energy Mater. 7, 1700286 (2017). https://doi.org/10.1002/aenm.201700286, Google ScholarCrossref
  6. 6. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, Science 353, 58 (2016). https://doi.org/10.1126/science.aaf8060, Google ScholarCrossref
  7. 7. N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, and K. Emery, Nat. Energy 1, 16152 (2016). https://doi.org/10.1038/nenergy.2016.152, Google ScholarCrossref
  8. 8. Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135, Google ScholarCrossref
  9. 9. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684, Google ScholarCrossref
  10. 10. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Science 354, 206 (2016). https://doi.org/10.1126/science.aah5557, Google ScholarCrossref, ISI
  11. 11. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, and N.-G. Park, J. Am. Chem. Soc. 140, 1358 (2018). https://doi.org/10.1021/jacs.7b10430, Google ScholarCrossref
  12. 12. J. A. Giesecke, M. C. Schubert, B. Michl, F. Schindler, and W. Warta, Sol. Energy Mater. Sol. Cells 95, 1011 (2011). https://doi.org/10.1016/j.solmat.2010.12.016, Google ScholarCrossref, ISI
  13. 13. Z. Hameiri, A. Mahboubi Soufiani, M. K. Juhl, L. Jiang, F. Huang, Y.-B. Cheng, H. Kampwerth, J. W. Weber, M. A. Green, and T. Trupke, Prog. Photovoltaics: Res. Appl. 23, 1697 (2015). https://doi.org/10.1002/pip.2716, Google ScholarCrossref
  14. 14. K. Zheng, K. Žídek, M. Abdellah, M. E. Messing, M. J. Al-Marri, and T. Pullerits, J. Phys. Chem. C 120, 3077 (2016). https://doi.org/10.1021/acs.jpcc.6b00612, Google ScholarCrossref
  15. 15. W. Tress, Adv. Energy Mater. 7, 1602358 (2017). https://doi.org/10.1002/aenm.201602358, Google ScholarCrossref
  16. 16. D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Science 348, 683 (2015). https://doi.org/10.1126/science.aaa5333, Google ScholarCrossref, ISI
  17. 17. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2, 303 (2012). https://doi.org/10.1109/jphotov.2012.2198434, Google ScholarCrossref
  18. 18. Y. Deng, Z. Xiao, and J. Huang, Adv. Energy Mater. 5, 1500721 (2015). https://doi.org/10.1002/aenm.201500721, Google ScholarCrossref
  19. 19. C. Zhao, B. Chen, X. Qiao, L. Luan, K. Lu, and B. Hu, Adv. Energy Mater. 5, 1500279 (2015). https://doi.org/10.1002/aenm.201500279, Google ScholarCrossref
  20. 20. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun. 7, 11574 (2016). https://doi.org/10.1038/ncomms11574, Google ScholarCrossref
  21. 21. S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, and P. V. Kamat, ACS Energy Lett. 1, 290 (2016). https://doi.org/10.1021/acsenergylett.6b00158, Google ScholarCrossref
  22. 22. W. Huang, S. J. Yoon, and P. Sapkota, ACS Appl. Energy Mater. 1, 2859 (2018). https://doi.org/10.1021/acsaem.8b00513, Google ScholarCrossref
  23. 23. R. P. Xu, Y. Q. Li, T. Y. Jin, Y. Q. Liu, Q. Y. Bao, C. O’Carroll, and J. X. Tang, ACS Appl. Mater. Interfaces 10, 6737 (2018). https://doi.org/10.1021/acsami.7b18389, Google ScholarCrossref
  24. 24. C. A. Combs, Curr. Protoc. Neurosci. 50, 2.1.1 (2010). https://doi.org/10.1002/0471142301.ns0201s50, Google ScholarCrossref
  25. 25. S. N. Habisreutinger, N. K. Noel, and H. J. Snaith, ACS Energy Lett. 3, 2472 (2018). https://doi.org/10.1021/acsenergylett.8b01627, Google ScholarCrossref
  26. 26. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, and S. Huettner, Adv. Mater. 28, 2446 (2016). https://doi.org/10.1002/adma.201503832, Google ScholarCrossref
  27. 27. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, and S. Priya, J. Phys. Chem. Lett. 6, 4693 (2015). https://doi.org/10.1021/acs.jpclett.5b02229, Google ScholarCrossref
  28. 28. D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck, T. P. White, K. Weber, and K. R. Catchpole, Phys. Chem. Chem. Phys. 19, 3094 (2017). https://doi.org/10.1039/c6cp06989d, Google ScholarCrossref
  29. 29. R. T. Ross, J. Chem. Phys. 46, 4590 (1967). https://doi.org/10.1063/1.1840606, Google ScholarScitation, ISI
  30. 30. A. M. Soufiani, Z. Hameiri, S. Meyer, S. Lim, M. J. Y. Tayebjee, J. S. Yun, A. Ho-Baillie, G. J. Conibeer, L. Spiccia, and M. A. Green, Adv. Energy Mater. 7, 1602111 (2017). https://doi.org/10.1002/aenm.201602111, Google ScholarCrossref
  31. 31. A. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Kohler, H.-W. Schmidt, and R. Hildner, Nature 523, 196 (2015). https://doi.org/10.1038/nature14570, Google ScholarCrossref
  32. 32. C. Li, A. Guerrero, Y. Zhong, A. Gräser, C. A. M. Luna, J. Köhler, J. Bisquert, R. Hildner, and S. Huettner, Small 13, 1701711 (2017). https://doi.org/10.1002/smll.201701711, Google ScholarCrossref
  33. 33. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, and N. Zhao, Adv. Funct. Mater. 24, 7102 (2014). https://doi.org/10.1002/adfm.201401872, Google ScholarCrossref
  34. 34. S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, and A. Ho-Baillie, ACS Appl. Mater. Interfaces 8, 5351 (2016). https://doi.org/10.1021/acsami.5b12376, Google ScholarCrossref
  35. 35. C. Li, Y. Zhong, C. Luna, T. Unger, K. Deichsel, A. Gräser, J. Köhler, A. Köhler, R. Hildner, and S. Huettner, Molecules 21, 1081 (2016). https://doi.org/10.3390/molecules21081081, Google ScholarCrossref
  36. 36. Y. Tian, A. Merdasa, E. Unger, M. Abdellah, K. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, V. Sundström, and I. G. Scheblykin, J. Phys. Chem. Lett. 6, 4171 (2015). https://doi.org/10.1021/acs.jpclett.5b02033, Google ScholarCrossref
  37. 37. S. Chen, X. Wen, S. Huang, F. Huang, Y.-B. Cheng, M. Green, and A. Ho-Baillie, Sol. RRL 1, 1600001 (2017). https://doi.org/10.1002/solr.201600001, Google ScholarCrossref
  38. 38. D. W. deQuilettes, W. Zhang, V. M. Burlakov, D. J. Graham, T. Leijtens, A. Osherov, V. Bulović, H. J. Snaith, D. S. Ginger, and S. D. Stranks, Nat. Commun. 7, 11683 (2016). https://doi.org/10.1038/ncomms11683, Google ScholarCrossref
  39. 39. E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, and F. De Angelis, Energy Environ. Sci. 9, 3180 (2016). https://doi.org/10.1039/c6ee01504b, Google ScholarCrossref
  40. 40. R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh-Hodesh, Y. Tischler, A. Zaban, C. Quarti, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 6, 2332 (2015). https://doi.org/10.1021/acs.jpclett.5b00994, Google ScholarCrossref
  41. 41. J. F. Galisteo-López, M. Anaya, M. E. Calvo, and H. Míguez, J. Phys. Chem. Lett. 6, 2200 (2015). https://doi.org/10.1021/acs.jpclett.5b00785, Google ScholarCrossref
  42. 42. S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Phys. Rev. Appl. 2, 034007 (2014). https://doi.org/10.1103/physrevapplied.2.034007, Google ScholarCrossref
  43. 43. R. Gottesman and A. Zaban, Acc. Chem. Res. 49, 320 (2016). https://doi.org/10.1021/acs.accounts.5b00446, Google ScholarCrossref
  44. 44. T. Tachikawa, I. Karimata, and Y. Kobori, J. Phys. Chem. Lett. 6, 3195 (2015). https://doi.org/10.1021/acs.jpclett.5b01566, Google ScholarCrossref
  45. 45. H. Yuan, E. Debroye, G. Caliandro, K. P. F. Janssen, J. van Loon, C. E. A. Kirschhock, J. A. Martens, J. Hofkens, and M. B. J. Roeffaers, ACS Omega 1, 148 (2016). https://doi.org/10.1021/acsomega.6b00107, Google ScholarCrossref
  46. 46. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/c3ta13606j, Google ScholarCrossref, ISI
  47. 47. X. Deng, X. Wen, J. Lau, T. Young, J. Yun, M. Green, S. Huang, and A. W. Y. Ho-Baillie, J. Mater. Chem. C 4, 9060 (2016). https://doi.org/10.1039/c6tc03206k, Google ScholarCrossref
  48. 48. H. Yuan, E. Debroye, K. Janssen, H. Naiki, C. Steuwe, G. Lu, M. Moris, E. Orgiu, H. Uji-i, F. De Schryver, P. Samorì, J. Hofkens, and M. Roeffaers, J. Phys. Chem. Lett. 7, 561 (2016). https://doi.org/10.1021/acs.jpclett.5b02828, Google ScholarCrossref
  49. 49. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660, Google ScholarCrossref
  50. 50. Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, and M. J. Heben, Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846, Google ScholarCrossref
  51. 51. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015). https://doi.org/10.1038/ncomms8497, Google ScholarCrossref, ISI
  52. 52. J. R. Harwell, T. K. Baikie, I. D. Baikie, J. L. Payne, C. Ni, J. T. S. Irvine, G. A. Turnbull, and I. D. W. Samuel, Phys. Chem. Chem. Phys. 18, 19738 (2016). https://doi.org/10.1039/c6cp02446g, Google ScholarCrossref
  53. 53. V. W. Bergmann, S. A. L. Weber, F. Javier Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, and R. Berger, Nat. Commun. 5, 5001 (2014). https://doi.org/10.1038/ncomms6001, Google ScholarCrossref, ISI
  54. 54. V. W. Bergmann, Y. Guo, H. Tanaka, I. M. Hermes, D. Li, A. Klasen, S. A. Bretschneider, E. Nakamura, R. Berger, and S. A. L. Weber, ACS Appl. Mater. Interfaces 8, 19402 (2016). https://doi.org/10.1021/acsami.6b04104, Google ScholarCrossref
  55. 55. J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, Energy Environ. Sci. 8, 2118 (2015). https://doi.org/10.1039/c5ee01265a, Google ScholarCrossref
  56. 56. C. Li, A. Guerrero, Y. Zhong, and S. Huettner, J. Phys.: Condens. Matter 29, 193001 (2017). https://doi.org/10.1088/1361-648x/aa626d, Google ScholarCrossref
  57. 57. J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, and J. Huang, Phys. Chem. Chem. Phys. 18, 30484 (2016). https://doi.org/10.1039/c6cp06496e, Google ScholarCrossref
  58. 58. C. Li, A. Guerrero, S. Huettner, and J. Bisquert, Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6, Google ScholarCrossref, ISI
  59. 59. E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, Chem. Sci. 6, 613 (2015). https://doi.org/10.1039/c4sc03141e, Google ScholarCrossref
  60. 60. M. H. Du, J. Phys. Chem. Lett. 6, 1461 (2015). https://doi.org/10.1021/acs.jpclett.5b00199, Google ScholarCrossref
  61. 61. M. H. Du, J. Mater. Chem. A 2, 9091 (2014). https://doi.org/10.1039/c4ta01198h, Google ScholarCrossref, ISI
  62. 62. D. J. Slotcavage, H. I. Karunadasa, and M. D. McGehee, ACS Energy Lett. 1, 1199 (2016). https://doi.org/10.1021/acsenergylett.6b00495, Google ScholarCrossref
  63. 63. D. Meggiolaro, S. G. Motti, E. Mosconi, A. J. Barker, J. Ball, C. Andrea Riccardo Perini, F. Deschler, A. Petrozza, and F. De Angelis, Energy Environ. Sci. 11, 702 (2018). https://doi.org/10.1039/c8ee00124c, Google ScholarCrossref
  64. 64. S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, and D. S. Ginger, J. Phys. Chem. C 122, 12633 (2018). https://doi.org/10.1021/acs.jpcc.8b03255, Google ScholarCrossref
  65. 65. D. Meggiolaro, E. Mosconi, and F. De Angelis, ACS Energy Lett. 3, 447 (2018). https://doi.org/10.1021/acsenergylett.7b01244, Google ScholarCrossref
  66. 66. H. Shi and M. H. Du, Phys. Rev. B 90, 174103 (2014). https://doi.org/10.1103/PhysRevB.90.174103, Google ScholarCrossref
  67. 67. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784, Google ScholarCrossref, ISI
  68. 68. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J.-P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, and E. H. Sargent, Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081, Google ScholarCrossref, ISI
  69. 69. X. Wen, A. Ho-Baillie, S. Huang, R. Sheng, S. Chen, H. Ko, and M. A. Green, Nano Lett. 15, 4644 (2015). https://doi.org/10.1021/acs.nanolett.5b01405, Google ScholarCrossref
  70. 70. Y. Yuan and J. Huang, Acc. Chem. Res. 49(2), 286 (2016). https://doi.org/10.1021/acs.accounts.5b00420, Google ScholarCrossref
  71. 71. J. L. Minns, P. Zajdel, D. Chernyshov, W. Van Beek, and M. A. Green, Nat. Commun. 8, 15152 (2017). https://doi.org/10.1038/ncomms15152, Google ScholarCrossref
  72. 72. Y. C. Zhao, W. K. Zhou, X. Zhou, K. H. Liu, D. P. Yu, and Q. Zhao, Light: Sci. Appl. 6, e16243 (2017). https://doi.org/10.1038/lsa.2016.243, Google ScholarCrossref
  73. 73. W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778, Google ScholarScitation, ISI
  74. 74. W. Nie, H. Tsai, R. Asadpour, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, and H. Wang, Science 347, 522 (2015). https://doi.org/10.1126/science.aaa0472, Google ScholarCrossref
  75. 75. J. S. Yun, J. Seidel, J. Kim, A. M. Soufiani, S. Huang, J. Lau, N. J. Jeon, S. Il Seok, M. A. Green, and A. Ho-Baillie, Adv. Energy Mater. 6, 1600330 (2016). https://doi.org/10.1002/aenm.201600330, Google ScholarCrossref
  1. © 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).