ABSTRACT
Liquid crystals (LCs) are matter with fluidity and anisotropy and have been used in various electro-optic devices for their capability to modulate the refractive index by voltage. Here, we show that LCs are capable of electro-mechanically modulating light to cause giant light deflection at low voltages (exceeding 64° at 1.0 V). We use a composite material where polymerized cholesteric LC particles that show optical Bragg reflection float in a nematic LC medium. The polymer-particles are elastically coupled with the host director through their surface molecular anchoring and rotate from a face-on to side-on configuration at the Frederik transition. Rigid-body rotation of the reflection plane causes light deflection, which is well reproducible and can be modelled theoretically. Our findings demonstrate the capability of LCs as a micro-electrical-mechanical system platform, which are potentially useful for large-area light-controlling applications.
This study was supported by a Grant-in-Aid for JSPS Fellows (18J10027), JSPS KAKENHI (17H02766), and JST PRESTO (JPMJPR151D). The authors thank Merck Performance Materials for providing the chiral dopant.
REFERENCES
- 1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays ( Wiley, 2010). Google Scholar
- 2. H. de Vries, Acta Crystallogr. 4, 219 (1951). https://doi.org/10.1107/S0365110X51000751, Google ScholarCrossref
- 3. W. Hass, J. Adams, and G. Dir, Chem. Phys. Lett. 14, 95 (1972). https://doi.org/10.1016/0009-2614(72)87152-5, Google ScholarCrossref, ISI
- 4. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, J. Appl. Phys. 103, 093107 (2008). https://doi.org/10.1063/1.2913326, Google ScholarScitation, ISI
- 5. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Adv. Mater. 21, 3915 (2009). https://doi.org/10.1002/adma.200900916, Google ScholarCrossref
- 6. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices ( Wiley, 2006). Google ScholarCrossref
- 7. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals ( Oxford, 1995). Google ScholarCrossref
- 8. S. Kawata, H. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001). https://doi.org/10.1038/35089130, Google ScholarCrossref, ISI
- 9. H. Yoshida, C. H. Lee, Y. Matsuhisa, A. Fujii, and M. Ozaki, Adv. Mater. 19, 1187 (2007). https://doi.org/10.1002/adma.200601753, Google ScholarCrossref
- 10. H. Yoshida, Y. Miura, K. Tokuoka, S. Suzuki, A. Fujii, and M. Ozaki, Opt. Express 16, 19034 (2008). https://doi.org/10.1364/OE.16.019034, Google ScholarCrossref
- 11. H. Yoshida, G. Nakazawa, K. Tagashira, and M. Ozaki, Soft Matter 8, 11323 (2012). https://doi.org/10.1039/c2sm26228b, Google ScholarCrossref
- 12. K. Imamura, H. Yoshida, and M. Ozaki, Soft Matter 12, 750 (2016). https://doi.org/10.1039/C5SM01956G, Google ScholarCrossref
- 13. K. Imamura, H. Yoshida, and M. Ozaki, Soft Matter 13, 4433 (2017). https://doi.org/10.1039/C7SM00535K, Google ScholarCrossref
- 14. D. A. Dunmur, in Physical Properties of Liquid Crystals: Nematics, edited by D. A. Dunmur , A. Fukuda , and G. R. Luckhurst ( INSPEC/IEE, London, UK, 2001), Chap. 5.2. Google Scholar
- 15. R. Manohar, K. K. Pandey, A. K. Srivastava, A. K. Misra, and S. P. Yadav, J. Phys. Chem. Solids 71, 1311 (2010). https://doi.org/10.1016/j.jpcs.2010.05.011, Google ScholarCrossref
- 16. A. Choudhary and G. Li, Opt. Express 22, 24348 (2014). https://doi.org/10.1364/OE.22.024348, Google ScholarCrossref
- 17. S. B. Chernyshuk and O. M. Tovkach, Liq. Cryst. 43, 2410 (2016). https://doi.org/10.1080/02678292.2016.1216619, Google ScholarCrossref
- 18. J. Li, S. Gauza, and S.-T. Wu, J. Appl. Phys. 96, 19 (2004). https://doi.org/10.1063/1.1757034, Google ScholarScitation, ISI
- 19. H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, Jpn. J. Appl. Phys. Part 1 22, 1080 (1983). https://doi.org/10.1143/JJAP.22.1080, Google ScholarCrossref
- 20. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, APL Photonics 3, 021302 (2018). https://doi.org/10.1063/1.5018865, Google ScholarScitation, ISI
- 21. L. Wu and H. Xie, Sens. Actuators, A: Phys. 145, 371 (2008). https://doi.org/10.1016/j.sna.2007.10.068, Google ScholarCrossref
- 22. L. Ye, G. Zhang, and Z. You, Sensors 17, 521 (2017). https://doi.org/10.3390/s17030521, Google ScholarCrossref
- 23. T. Z. Kosc, K. L. Marshall, S. D. Jacobs, J. C. Lambropoulos, and S. M. Faris, Appl. Opt. 41, 5362 (2002). https://doi.org/10.1364/AO.41.005362, Google ScholarCrossref
- 24. E. M. Korenic, S. D. Jacobs, and S. M. Faris, Mol. Cryst. Liq. Cryst. 317, 197 (1998). https://doi.org/10.1080/10587259808047116, Google ScholarCrossref
- 25. A. Trajkovska-Petkoska, R. Varshneya, T. Z. Kosc, K. L. Marshall, and S. D. Jacobs, Adv. Funct. Mater. 15, 217 (2005). https://doi.org/10.1002/adfm.200400286, Google ScholarCrossref
- 26. A. Trajkovska-Petkoska, T. Z. Kosc, K. L. Marshall, K. Hasman, and S. D. Jacobs, J. Appl. Phys. 103, 094907 (2008). https://doi.org/10.1063/1.2903526, Google ScholarScitation
- 27. E. Beltran-Gracia and O. L. Parri, J. Mater. Chem. C 3, 11335 (2015). https://doi.org/10.1039/C5TC02920A, Google ScholarCrossref
- 28. K. G. Noh and S. Y. Park, Mater. Horiz. 4, 633 (2017). https://doi.org/10.1039/C7MH00155J, Google ScholarCrossref
- 29. H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, J. Mater. Chem. C 5, 7567 (2017). https://doi.org/10.1039/C7TC02660A, Google ScholarCrossref
- 30. J. Kobashi, H. Yoshida, and M. Ozaki, Nat. Photonics 10, 389 (2016). https://doi.org/10.1038/nphoton.2016.66, Google ScholarCrossref
- 31. M. Rafayelyan, G. Tkachenko, and E. Brasselet, Phys. Rev. Lett. 116, 253902 (2016). https://doi.org/10.1103/PhysRevLett.116.253902, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.