No Access Submitted: 03 December 2018 Accepted: 22 January 2019 Published Online: 11 February 2019
Appl. Phys. Lett. 114, 061901 (2019); https://doi.org/10.1063/1.5083980
more...View Affiliations
View Contributors
  • Koki Imamura
  • Hiroyuki Yoshida
  • Masanori Ozaki
Liquid crystals (LCs) are matter with fluidity and anisotropy and have been used in various electro-optic devices for their capability to modulate the refractive index by voltage. Here, we show that LCs are capable of electro-mechanically modulating light to cause giant light deflection at low voltages (exceeding 64° at 1.0 V). We use a composite material where polymerized cholesteric LC particles that show optical Bragg reflection float in a nematic LC medium. The polymer-particles are elastically coupled with the host director through their surface molecular anchoring and rotate from a face-on to side-on configuration at the Frederik transition. Rigid-body rotation of the reflection plane causes light deflection, which is well reproducible and can be modelled theoretically. Our findings demonstrate the capability of LCs as a micro-electrical-mechanical system platform, which are potentially useful for large-area light-controlling applications.
This study was supported by a Grant-in-Aid for JSPS Fellows (18J10027), JSPS KAKENHI (17H02766), and JST PRESTO (JPMJPR151D). The authors thank Merck Performance Materials for providing the chiral dopant.
  1. 1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays ( Wiley, 2010). Google Scholar
  2. 2. H. de Vries, Acta Crystallogr. 4, 219 (1951). https://doi.org/10.1107/S0365110X51000751, Google ScholarCrossref
  3. 3. W. Hass, J. Adams, and G. Dir, Chem. Phys. Lett. 14, 95 (1972). https://doi.org/10.1016/0009-2614(72)87152-5, Google ScholarCrossref, ISI
  4. 4. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, J. Appl. Phys. 103, 093107 (2008). https://doi.org/10.1063/1.2913326, Google ScholarScitation, ISI
  5. 5. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Adv. Mater. 21, 3915 (2009). https://doi.org/10.1002/adma.200900916, Google ScholarCrossref
  6. 6. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices ( Wiley, 2006). Google ScholarCrossref
  7. 7. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals ( Oxford, 1995). Google ScholarCrossref
  8. 8. S. Kawata, H. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001). https://doi.org/10.1038/35089130, Google ScholarCrossref, ISI
  9. 9. H. Yoshida, C. H. Lee, Y. Matsuhisa, A. Fujii, and M. Ozaki, Adv. Mater. 19, 1187 (2007). https://doi.org/10.1002/adma.200601753, Google ScholarCrossref
  10. 10. H. Yoshida, Y. Miura, K. Tokuoka, S. Suzuki, A. Fujii, and M. Ozaki, Opt. Express 16, 19034 (2008). https://doi.org/10.1364/OE.16.019034, Google ScholarCrossref
  11. 11. H. Yoshida, G. Nakazawa, K. Tagashira, and M. Ozaki, Soft Matter 8, 11323 (2012). https://doi.org/10.1039/c2sm26228b, Google ScholarCrossref
  12. 12. K. Imamura, H. Yoshida, and M. Ozaki, Soft Matter 12, 750 (2016). https://doi.org/10.1039/C5SM01956G, Google ScholarCrossref
  13. 13. K. Imamura, H. Yoshida, and M. Ozaki, Soft Matter 13, 4433 (2017). https://doi.org/10.1039/C7SM00535K, Google ScholarCrossref
  14. 14. D. A. Dunmur, in Physical Properties of Liquid Crystals: Nematics, edited by D. A. Dunmur , A. Fukuda , and G. R. Luckhurst ( INSPEC/IEE, London, UK, 2001), Chap. 5.2. Google Scholar
  15. 15. R. Manohar, K. K. Pandey, A. K. Srivastava, A. K. Misra, and S. P. Yadav, J. Phys. Chem. Solids 71, 1311 (2010). https://doi.org/10.1016/j.jpcs.2010.05.011, Google ScholarCrossref
  16. 16. A. Choudhary and G. Li, Opt. Express 22, 24348 (2014). https://doi.org/10.1364/OE.22.024348, Google ScholarCrossref
  17. 17. S. B. Chernyshuk and O. M. Tovkach, Liq. Cryst. 43, 2410 (2016). https://doi.org/10.1080/02678292.2016.1216619, Google ScholarCrossref
  18. 18. J. Li, S. Gauza, and S.-T. Wu, J. Appl. Phys. 96, 19 (2004). https://doi.org/10.1063/1.1757034, Google ScholarScitation, ISI
  19. 19. H. Takezoe, Y. Ouchi, M. Hara, A. Fukuda, and E. Kuze, Jpn. J. Appl. Phys. Part 1 22, 1080 (1983). https://doi.org/10.1143/JJAP.22.1080, Google ScholarCrossref
  20. 20. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, APL Photonics 3, 021302 (2018). https://doi.org/10.1063/1.5018865, Google ScholarScitation, ISI
  21. 21. L. Wu and H. Xie, Sens. Actuators, A: Phys. 145, 371 (2008). https://doi.org/10.1016/j.sna.2007.10.068, Google ScholarCrossref
  22. 22. L. Ye, G. Zhang, and Z. You, Sensors 17, 521 (2017). https://doi.org/10.3390/s17030521, Google ScholarCrossref
  23. 23. T. Z. Kosc, K. L. Marshall, S. D. Jacobs, J. C. Lambropoulos, and S. M. Faris, Appl. Opt. 41, 5362 (2002). https://doi.org/10.1364/AO.41.005362, Google ScholarCrossref
  24. 24. E. M. Korenic, S. D. Jacobs, and S. M. Faris, Mol. Cryst. Liq. Cryst. 317, 197 (1998). https://doi.org/10.1080/10587259808047116, Google ScholarCrossref
  25. 25. A. Trajkovska-Petkoska, R. Varshneya, T. Z. Kosc, K. L. Marshall, and S. D. Jacobs, Adv. Funct. Mater. 15, 217 (2005). https://doi.org/10.1002/adfm.200400286, Google ScholarCrossref
  26. 26. A. Trajkovska-Petkoska, T. Z. Kosc, K. L. Marshall, K. Hasman, and S. D. Jacobs, J. Appl. Phys. 103, 094907 (2008). https://doi.org/10.1063/1.2903526, Google ScholarScitation
  27. 27. E. Beltran-Gracia and O. L. Parri, J. Mater. Chem. C 3, 11335 (2015). https://doi.org/10.1039/C5TC02920A, Google ScholarCrossref
  28. 28. K. G. Noh and S. Y. Park, Mater. Horiz. 4, 633 (2017). https://doi.org/10.1039/C7MH00155J, Google ScholarCrossref
  29. 29. H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, J. Mater. Chem. C 5, 7567 (2017). https://doi.org/10.1039/C7TC02660A, Google ScholarCrossref
  30. 30. J. Kobashi, H. Yoshida, and M. Ozaki, Nat. Photonics 10, 389 (2016). https://doi.org/10.1038/nphoton.2016.66, Google ScholarCrossref
  31. 31. M. Rafayelyan, G. Tkachenko, and E. Brasselet, Phys. Rev. Lett. 116, 253902 (2016). https://doi.org/10.1103/PhysRevLett.116.253902, Google ScholarCrossref
  1. © 2019 Author(s). Published under license by AIP Publishing.