ABSTRACT
We propose a data sampling scheme for high-dimensional neural network potentials that can predict energies along the reaction pathway calculated using the hybrid density functional theory. We observed that a data sampling scheme that combined partial geometry optimization of intermediate structures with random displacement of atoms successfully predicted the energies along the reaction path with respect to five chemical reactions: Claisen rearrangement, Diels–Alder reaction, [1,5]-sigmatropic hydrogen shift, concerted hydrogen transfer in the water hexamer, and Cornforth rearrangement.
- 1. N. Artrith, A. Urban, and G. Ceder, Phys. Rev. B 96, 014112 (2017). https://doi.org/10.1103/physrevb.96.014112, Google ScholarCrossref
- 2. S. A. Ghasemi, A. Hofstetter, S. Saha, and S. Goedecker, Phys. Rev. B: Condens. Matter Mater. Phys. 92, 045131 (2015). https://doi.org/10.1103/physrevb.92.045131, Google ScholarCrossref
- 3. S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R. Müller, Sci Adv. 3, e1603015 (2017). https://doi.org/10.1126/sciadv.1603015, Google ScholarCrossref
- 4. V. Botu and R. Ramprasad, Int. J. Quantum Chem. 115, 1074 (2015). https://doi.org/10.1002/qua.24836, Google ScholarCrossref
- 5. V. Botu, R. Batra, J. Chapman, and R. Ramprasad, J. Phys. Chem. C 121, 511 (2017). https://doi.org/10.1021/acs.jpcc.6b10908, Google ScholarCrossref
- 6. Y. Li, H. Li, F. C. Pickard, B. Narayanan, F. G. Sen, M. K. Y. Chan, S. K. R. S. Sankaranarayanan, B. R. Brooks, and B. Roux, J. Chem. Theory Comput. 13, 4492 (2017). https://doi.org/10.1021/acs.jctc.7b00521, Google ScholarCrossref
- 7. R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, J. Chem. Theory Comput. 11, 2087 (2015). https://doi.org/10.1021/acs.jctc.5b00099, Google ScholarCrossref
- 8. F. A. Faber, A. S. Christensen, B. Huang, and O. A. Von Lilienfeld, J. Chem. Phys. 148, 241717 (2018). https://doi.org/10.1063/1.5020710, Google ScholarScitation, ISI
- 9. K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller, J. Chem. Phys. 148, 241722 (2018). https://doi.org/10.1063/1.5019779, Google ScholarScitation, ISI
- 10. J. Behler, J. Chem. Phys. 145, 170901 (2016). https://doi.org/10.1063/1.4966192, Google ScholarScitation, ISI
- 11. K. Yao, J. E. Herr, D. W. Toth, R. McKintyre, and J. Parkhill, Chem. Sci. 9, 2261 (2018). https://doi.org/10.1039/c7sc04934j, Google ScholarCrossref
- 12. J. Behler, Angew. Chem., Int. Ed. 56, 12828 (2017). https://doi.org/10.1002/anie.201703114, Google ScholarCrossref
- 13. J. Behler, Int. J. Quantum Chem. 115, 1032 (2015). https://doi.org/10.1002/qua.24890, Google ScholarCrossref
- 14. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403 (2010). https://doi.org/10.1103/physrevlett.104.136403, Google ScholarCrossref
- 15. W. J. Szlachta, A. P. Bartók, and G. Csányi, Phys. Rev. B: Condens. Matter Mater. Phys. 90, 104108 (2014). https://doi.org/10.1103/physrevb.90.104108, Google ScholarCrossref
- 16. A. P. Bartok, S. De, C. Poelking, N. Bernstein, J. Kermode, G. Csányi, and M. Ceriotti, Sci. Adv. 3, e1701816 (2017). https://doi.org/10.1126/sciadv.1701816, Google ScholarCrossref
- 17. M. J. Gillan, D. Alfè, A. P. Bartók, and G. Csányi, J. Chem. Phys. 139, 244504 (2013). https://doi.org/10.1063/1.4852182, Google ScholarScitation, ISI
- 18. B. Jiang and H. Guo, J. Chem. Phys. 141, 034109 (2014). https://doi.org/10.1063/1.4887363, Google ScholarScitation, ISI
- 19. Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26 (2010). https://doi.org/10.1021/ct9004917, Google ScholarCrossref
- 20. X. Zhou, F. Nattino, Y. Zhang, J. Chen, G. J. Kroes, H. Guo, and B. Jiang, Phys. Chem. Chem. Phys. 19, 30540 (2017). https://doi.org/10.1039/c7cp05993k, Google ScholarCrossref
- 21. J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013). https://doi.org/10.1063/1.4832697, Google ScholarScitation, ISI
- 22. M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013). https://doi.org/10.1063/1.4799915, Google ScholarScitation, ISI
- 23. A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001). https://doi.org/10.1021/jp004368u, Google ScholarCrossref
- 24. T. T. Nguyen, E. Székely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A. W. Götz, and F. Paesani, J. Chem. Phys. 148, 241725 (2018). https://doi.org/10.1063/1.5024577, Google ScholarScitation, ISI
- 25. M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012). https://doi.org/10.1103/physrevlett.108.058301, Google ScholarCrossref
- 26. R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, Sci. Data 1, 140022 (2014). https://doi.org/10.1038/sdata.2014.22, Google ScholarCrossref
- 27. J. S. Smith, O. Isayev, and A. E. Roitberg, Chem. Sci. 8, 3192 (2017). https://doi.org/10.1039/c6sc05720a, Google ScholarCrossref
- 28. J. S. Smith, O. Isayev, and A. E. Roitberg, Sci. Data 4, 170193 (2017). https://doi.org/10.1038/sdata.2017.193, Google ScholarCrossref
- 29. L. C. Blum and J. Reymond, J. Am. Chem. Soc. 131, 8732 (2009). https://doi.org/10.1021/ja902302h, Google ScholarCrossref
- 30. L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J. L. Reymond, J. Chem. Inf. Model. 52, 2864 (2012). https://doi.org/10.1021/ci300415d, Google ScholarCrossref
- 31. F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Müller, Nat. Commun. 8, 872 (2017). https://doi.org/10.1038/s41467-017-00839-3, Google ScholarCrossref
- 32. J. E. Herr, K. Yao, R. McIntyre, D. W. Toth, and J. Parkhill, J. Chem. Phys. 148, 241710 (2018). https://doi.org/10.1063/1.5020067, Google ScholarScitation, ISI
- 33. M. J. Frisch et al., Gaussian 16 Revision A.03 program (Gaussian, Inc., 2016). Google Scholar
- 34. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/physreva.38.3098, Google ScholarCrossref
- 35. A. D. Becke, J. Chem. Phys. 96, 2155 (1992). https://doi.org/10.1063/1.462066, Google ScholarScitation, ISI
- 36. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/physrevb.37.785, Google ScholarCrossref
- 37. P. R. Andrews, G. D. Smith, and I. G. Young, Biochemistry 12, 3492 (1973). https://doi.org/10.1021/bi00742a022, Google ScholarCrossref
- 38. S. D. Copley and J. R. Knowles, J. Am. Chem. Soc. 107, 5306 (1985). https://doi.org/10.1021/ja00304a064, Google ScholarCrossref
- 39. K. N. Houk, Y. T. Lin, and F. K. Brown, J. Am. Chem. Soc. 108, 554 (1986). https://doi.org/10.1021/ja00263a059, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.